LAPSE


Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Keywords
Records with Keyword: Energy Efficiency
Showing records 1 to 25 of 37. [First] Page: 1 2 Last
A Review on Energy Consumption, Energy Efficiency and Energy Saving of Metal Forming Processes from Different Hierarchies
Mengdi Gao, Kang He, Lei Li, Qingyang Wang, Conghu Liu
August 8, 2019 (v1)
Subject: Energy Policy
Keywords: energy consumption, Energy Efficiency, energy-saving, metal forming process, press
Energy efficiency improvement and environmental impact reduction are emerging issues in the manufacturing industry. Aside from cutting, metal forming is also an important process in manufacturing. Metal forming is energy intensive because of the low energy efficiency of the used metal forming press. Although many literature reviews focused on the energy reduction and energy efficiency of machine tools, a comprehensive literature review of metal forming processes remains lacking because of the great difference between cutting machines and forming equipment. In addition, methods for energy efficiency and energy-saving still need to be promoted in metal forming. In this review, a novel hierarchy of the metal forming system was presented to describe the relationship among the equipment, process, and manufacturing system, providing a guideline of methods for energy efficiency and saving in metal forming. Then, existing energy consumption modeling and estimation theories and methods were dis... [more]
Measuring Energy Efficiency and Environmental Performance: A Case of South Asia
Yumei Hou, Wasim Iqbal, Ghulam Muhammad Shaikh, Nadeem Iqbal, Yasir Ahmad Solangi, Arooj Fatima
August 5, 2019 (v1)
Subject: Energy Policy
Keywords: Energy Efficiency, energy efficiency indicators, environmental performance, South Asia region
When assessing energy efficiency, most studies have frequently ignored environmental aspects even though the concept has been widely used in the past. This study evaluates the energy efficiency and environmental performance of South Asia by using DEA (data envelopment analysis) like mathematical composite indicator. We construct a comprehensive set of indicators, including an energy self-sufficiency ratio, energy production over consumption ratio, energy imports, diversification index of energy imports, energy reserve ratio, GDP productivity, energy intensity, per capita energy consumption index, carbon emission index, carbon emission index per unit of energy consumption and share of renewable energy in order to develop an energy efficiency and environmental performance index. Unlike other studies, this study first examines each indicator and then estimates a combined score for each country. The results reveal that Bhutan as a more secure country and Pakistan showed a decreasing trend,... [more]
A Composite Evaluation Model of Sustainable Manufacturing in Machining Process for Typical Machine Tools
Lishu Lv, Zhaohui Deng, Tao Liu, Linlin Wan, Wenliang Huang, Hui Yin, Tao Zhao
July 29, 2019 (v1)
Keywords: carbon efficiency, energy conservation and emission reduction, Energy Efficiency, green degree, typical machine tools
Machine tool is the basic manufacturing equipment in today’s mechanical manufacturing industry. A considerable amount of energy and carbon emission are consumed in machining processes, the realization of sustainable manufacturing of machine tools have become an urgent problem to be solved in the field of industry and academia. Therefore, five types of machine tools were selected for the typical machining processes (turning, milling, planning, grinding and drilling). Then the model of the energy efficiency, carbon efficiency and green degree model were established in this paper which considers the theory and experiment with the resource, energy and emission modeling method. The head frame spindle and head frame box were selected to verify the feasibility and practicability of the proposed model, based on the orthogonal experiment case of the key machining process. In addition, the influence rules of machining parameters were explored and the energy efficiency and green degree of the mac... [more]
Particle Swarm Optimization for Outdoor Lighting Design
Ana Castillo-Martinez, Jose Ramon Almagro, Alberto Gutierrez-Escolar, Antonio del Corte, José Luis Castillo-Sequera, José Manuel Gómez-Pulido, José-María Gutiérrez-Martínez
July 26, 2019 (v1)
Keywords: Energy Efficiency, lighting design, lighting optimization, particle swarm optimization (PSO)
Outdoor lighting is an essential service for modern life. However, the high influence of this type of facility on energy consumption makes it necessary to take extra care in the design phase. Therefore, this manuscript describes an algorithm to help light designers to get, in an easy way, the best configuration parameters and to improve energy efficiency, while ensuring a minimum level of overall uniformity. To make this possible, we used a particle swarm optimization (PSO) algorithm. These algorithms are well established, and are simple and effective to solve optimization problems. To take into account the most influential parameters on lighting and energy efficiency, 500 simulations were performed using DIALux software (4.10.0.2, DIAL, Ludenscheid, Germany). Next, the relation between these parameters was studied using to data mining software. Subsequently, we conducted two experiments for setting parameters that enabled the best configuration algorithm in order to improve efficiency... [more]
Assessment of the Governance System Regarding Adoption of Energy Efficient Appliances by Households in Nigeria
James A. Gana, Thomas Hoppe
July 26, 2019 (v1)
Subject: Energy Policy
Keywords: Energy Efficiency, governance, household electrical appliances, Nigeria, policy
The adoption of energy efficient electrical appliances by households has a great potential to reduce electricity consumption in Nigeria. A well-formulated and implemented policy (mix) to spur adoption is said to be required to drive this process. This article presents an assessment of policies that aim to spur adoption among households, and the related governance system. The analytical framework used for this analysis is the Governance Assessment Tool (GAT). Data collection involved semi-structured interviews, a review of policy documents, and secondary quantitative data. The results show that policies in Nigeria had little effect in meeting pre-set goals. The governance system was found to be weakly developed due to a lack of policy, the overlapping work of different governmental organizations, a lack of appropriate resources, and a lack of householders’ involvement in agenda-setting and decision-making processes. Current actions mostly depend on local programmes that run via donor ai... [more]
Characterization and Analysis of Energy Demand Patterns in Airports
Sergio Ortega Alba, Mario Manana
July 26, 2019 (v1)
Keywords: airports, electric charges, electric load profile, energy consumption, energy demand patterns, Energy Efficiency, energy modeling, infrastructure energy conservation, loads
Airports in general have high-energy consumption. Influenced by many factors, the characteristics of airport energy consumption are stochastic, nonlinear and dynamic. In recent years, airport managers have made huge efforts to harmonize airport operation with environmental sustainability by minimizing the environmental impact, with energy conservation and energy efficiency as one of their pillars. A key factor in order to reduce energy consumption at airports is to understand the energy use and consumption behavior, due to the multiple parameters and singularities that are involved. In this article, a 3-step methodology based on monitoring methods is proposed to characterize and analyze energy demand patterns in airports through their electric load profiles, and is applied to the Seve Ballesteros-Santander Airport (Santander, Spain). This methodology can be also used in airports in order to determine the way energy is used, to establish the classification of the electrical charges base... [more]
Barriers to Energy Efficiency in Swedish Non-Energy-Intensive Micro- and Small-Sized Enterprises—A Case Study of a Local Energy Program
Fredrik Backman
July 26, 2019 (v1)
Subject: Energy Policy
Keywords: barriers, Energy Efficiency, municipal, Swedish local enterprises
Improved energy efficiency has become a strategic issue and represents a priority for European competitiveness. Countries adopt various energy policies on local and national levels where energy audit programs are the most common energy end-use efficiency policy for industrial small- and medium-sized enterprises (SMEs). However, studies indicate that cost-efficient energy conservation measures are not always implemented, which can be explained by the existence of barriers to energy efficiency. This paper investigates how Swedish municipalities can support local micro- and small-sized enterprises with improved energy efficiency and the existence of different barriers to the implementation of energy efficiency. Relating this empirical case study to the theoretical barriers outlined in the text, this study found that the major explanatory factors related to non-implementation of cost-effective energy efficiency measures among micro- and small-sized industrial enterprises were bounded ratio... [more]
Energy Rebound as a Potential Threat to a Low-Carbon Future: Findings from a New Exergy-Based National-Level Rebound Approach
Paul E. Brockway, Harry Saunders, Matthew K. Heun, Timothy J. Foxon, Julia K. Steinberger, John R. Barrett, Steve Sorrell
July 26, 2019 (v1)
Keywords: aggregate production function (APF), constant elasticity of substitution (CES) function, Energy Efficiency, energy policy, energy rebound, Exergy, Exergy Efficiency, macroeconomic rebound
150 years ago, Stanley Jevons introduced the concept of energy rebound: that anticipated energy efficiency savings may be “taken back” by behavioural responses. This is an important issue today because, if energy rebound is significant, this would hamper the effectiveness of energy efficiency policies aimed at reducing energy use and associated carbon emissions. However, empirical studies which estimate national energy rebound are rare and, perhaps as a result, rebound is largely ignored in energy-economy models and associated policy. A significant difficulty lies in the components of energy rebound assessed in empirical studies: most examine direct and indirect rebound in the static economy, excluding potentially significant rebound of the longer term structural response of the national economy. In response, we develop a novel exergy-based approach to estimate national energy rebound for the UK and US (1980⁻2010) and China (1981⁻2010). Exergy—as “available energy”—allows a consistent,... [more]
Improving Flexibility and Energy Efficiency of Post-Combustion CO₂ Capture Plants Using Economic Model Predictive Control
Benjamin Decardi-Nelson, Su Liu, Jinfeng Liu
April 8, 2019 (v1)
Keywords: Energy Efficiency, optimal control, post-combustion CO2 capture, time-varying operation
To reduce CO 2 emissions from power plants, electricity companies have diversified their generation sources. Fossil fuels, however, still remain an integral energy generation source as they are more reliable compared to the renewable energy sources. This diversification as well as changing electricity demand could hinder effective economical operation of an amine-based post-combustion CO 2 capture (PCC) plant attached to the power plant to reduce CO 2 emissions. This is as a result of large fluctuations in the flue gas flow rate and unavailability of steam from the power plant. To tackle this problem, efficient control algorithms are necessary. In this work, tracking and economic model predictive controllers are applied to a PCC plant and their economic performance is compared under different scenarios. The results show that economic model predictive control has a potential to improve the economic performance and energy efficiency of the amine-based PCC process up... [more]
Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis
Oludunsin Arodudu, Katharina Helming, Hubert Wiggering, Alexey Voinov
March 26, 2019 (v1)
Subject: Biosystems
Keywords: bioenergy, biofuel, Energy Efficiency, EROEI, high-intensity industrialized agricultural production systems, low-intensity eco-agricultural production systems, NEG
In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed the feasibility of bioenergy production under relatively low-intensity conservative, eco-agricultural settings (as opposed to those produced under high-intensity, fossil fuel based industrialized agriculture). Estimates of the net energy gain (NEG) and the energy return on energy invested (EROEI) obtained from a life cycle inventory of the energy inputs and outputs involved reveal that the energy efficiency of bioenergy produced in low-intensity eco-agricultural systems could be as much as much as 448.5⁻488.3 GJ·ha−1 of NEG and an EROEI of 5.4⁻5.9 for maize ethanol production systems, and as much as 155.0⁻283.9 GJ·ha−1 of NEG and an EROEI of 14.7⁻22.4 for maize biogas production systems. Thi... [more]
Development of a Numerical Weather Analysis Tool for Assessing the Precooling Potential at Any Location
Dimitris Lazos, Merlinde Kay, Alistair Sproul
March 26, 2019 (v1)
Keywords: climate effects, Energy Efficiency, precooling, weather analysis
Precooling a building overnight during the summer is a low cost practice that may provide significant help in decreasing energy demand and shaving peak loads in buildings. The effectiveness of precooling depends on the weather patterns at the location, however research in this field is predominantly focused in the building thermal response alone. This paper proposes an analytical tool for assessing the precooling potential through simulations from real data in a numerical weather prediction platform. Three dimensionless ratios are developed based on the meteorological analysis and the concept of degree hours that provide an understanding of the precooling potential, utilization and theoretical value. Simulations were carried out for five sites within the Sydney (Australia) metro area and it was found that they have different responses to precooling, depending on their proximity to the ocean, vegetation coverage, and urban density. These effects cannot be detected when typical meteorolo... [more]
Green Small Cell Operation of Ultra-Dense Networks Using Device Assistance
Gilsoo Lee, Hongseok Kim
February 27, 2019 (v1)
Keywords: belief propagation, cellular networks, Energy Efficiency, Optimization, small cell
As higher performance is demanded in 5G networks, energy consumption in wireless networks increases along with the advances of various technologies, so enhancing energy efficiency also becomes an important goal to implement 5G wireless networks. In this paper, we study the energy efficiency maximization problem focused on finding a suitable set of turned-on small cell access points (APs). Finding the suitable on/off states of APs is challenging since the APs can be deployed by users while centralized network planning is not always possible. Therefore, when APs in small cells are randomly deployed and thus redundant in many cases, a mechanism of dynamic AP turning-on/off is required. We propose a device-assisted framework that exploits feedback messages from the user equipment (UE). To solve the problem, we apply an optimization method using belief propagation (BP) on a factor graph. Then, we propose a family of online algorithms inspired by BP, called DANCE, that requires low computati... [more]
Exergy Accounting: A Quantitative Comparison of Methods and Implications for Energy-Economy Analysis
Jack Miller, Timothy J. Foxon, Steve Sorrell
February 5, 2019 (v1)
Keywords: decoupling, economic growth, Energy, Energy Efficiency, Exergy
Assessments of the feasibility of decoupling energy consumption from economic growth could benefit from an improved understanding of the size, nature and value of different energy flows. This understanding may be enhanced by focusing upon so-called “useful exergy”—a measure of both the quantity and “quality” of energy (defined here as its thermodynamic ability to perform physical work) at the “useful” stage of the energy conversion chain. Useful exergy flows within national economies are increasingly being quantified and their role in economic activity explored. However, this so-called “exergy economics” field currently lacks a consistent methodology. This paper contributes to the development of a more consistent approach. By constructing a “useful exergy account” for the United Kingdom covering the period 1960⁻2012, we explore how different methodological choices influence estimates of useful exergy for different categories of end-use as well as estimates of total national useful exer... [more]
Methodologies Developed for EcoCity Related Projects: New Borg El Arab, an Egyptian Case Study
Carmen Antuña-Rozado, Justo García-Navarro, Francesco Reda, Pekka Tuominen
January 30, 2019 (v1)
Subject: Energy Policy
Keywords: CO2 emissions, EcoCity, EcoCity methodologies, Egypt, Energy Efficiency, energy survey, feasibility study, roadmap, sustainability scenarios
The aim of the methodologies described here is to propose measures and procedures for developing concepts and technological solutions, which are adapted to the local conditions, to build sustainable communities in developing countries and emerging economies. These methodologies are linked to the EcoCity framework outlined by VTT Technical Research Centre of Finland Ltd. for sustainable community and neighbourhood regeneration and development. The framework is the result of a long experience in numerous EcoCity related projects, mainly Nordic and European in scope, which has been reformulated in recent years to respond to the local needs in the previously mentioned countries. There is also a particular emphasis on close collaboration with local partners and major stakeholders. In order to illustrate how these methodologies can support EcoCity concept development and implementation, results from a case study in Egypt will be discussed. The referred case study relates to the transformatio... [more]
Perspectives on Near ZEB Renovation Projects for Residential Buildings: The Spanish Case
Faustino Patiño-Cambeiro, Julia Armesto, Faustino Patiño-Barbeito, Guillermo Bastos
January 30, 2019 (v1)
Subject: Energy Policy
Keywords: buildings, cost-optimal, Energy Efficiency, nZEB, renovation
EU regulations are gradually moving towards policies that reduce energy consumption and its environmental impact. To reach this goal, improving energy efficiency in residential buildings is a key action line. The European Parliament adopted the Near Zero-Energy Building (nZEB) as the energy efficiency paradigm through Directive 2010/31/EU, but a common technical and legislative framework for energy renovations is yet to be established. In this paper, the nZEB definition by COHERENO was adopted to evaluate several energy renovation packages in a given building, which is also representative of the Spanish building stock. Global costs are calculated for all of them following EPBD prescriptions. Two economic scenarios are analysed: with entirely private funding and with the current public financial incentives, respectively. The results show the divergence between optimum solutions in terms of costs and of minimum CO₂ footprint and maximum energy saving. Moreover, in the absence of enough i... [more]
Cost-Benefit Analysis for Energy Management in Public Buildings: Four Italian Case Studies
Davide Astiaso Garcia, Fabrizio Cumo, Mariagrazia Tiberi, Valentina Sforzini, Giuseppe Piras
January 7, 2019 (v1)
Keywords: building envelope, cost-benefit analysis, energy demand savings, Energy Efficiency, geothermal plant, public buildings, retrofitting, thermostatic valves, trigeneration plant
Improving energy efficiency in public buildings is one of the main challenges for a sustainable requalification of energy issues and a consequent reduction of greenhouse gas (GHG) emissions. This paper aims to provide preliminary information about economic costs and energy consumption reductions (benefits) of some considered interventions in existing public buildings. Methods include an analysis of some feasible interventions in four selected public buildings. Energy efficiency improvements have been assessed for each feasible intervention. The difference of the building global energy performance index (EPgl) has been assessed before and after each intervention. Economic costs of each intervention have been estimated by averaging the amount demanded by different companies for the same intervention. Results obtained show economic costs and the EPgl percentage improvement for each intervention, highlighting and allowing for the comparison of energy consumption reduction and relative econ... [more]
McMaster University Course Lectures in Energy Systems Engineering
Thomas Alan Adams II
December 17, 2018 (v1)
Lecture slides from the Fall 2018 CHEM ENG 4A03/6A03 Energy System Engineering course at McMaster University are attached. Energy Systems Engineering is a survey course that discusses many ways in which energy products are produced, transported, converted, and consumed in our society today. The lectures correspond to two 50-minute lectures a week for 13 weeks (some slide decks take 2 or 3 lectures to complete). The course cannot cover all energy systems of course, but focus mostly on large-scale or common processes either in use today or currently in development and research. The course takes a chemical engineering perspective so more attention is paid to processes and thermochemical phenomena and less attention is paid to issues related to mechanical engineering or electrical engineering, although there is some intersection.

The lecture slides include the following topics:

1.1. Life Cycle Analysis (basic review)
1.2. Key Metrics in Energy Systems
2.1. Coal Production
2.2. Nat... [more]
Energy Transitions in Nigeria: The Evolution of Energy Infrastructure Provision (1800⁻2015)
Norbert Edomah, Chris Foulds, Aled Jones
December 3, 2018 (v1)
Subject: Energy Policy
Keywords: Africa, developing countries, energy demand, Energy Efficiency, energy histories, energy policy, energy transitions
The provision of energy infrastructure is essential for economic growth, social cohesion, and environmental sustainability. Understanding the multiple functions and services it provides us requires firstly a deeper understanding of the factors that influence energy infrastructure itself. This paper focusses on the factors that influence the evolution of energy infrastructure in Nigeria. By studying different eras of energy use according to the technologies that were being implemented, resources that were available, and the political practice of the time it is possible to better frame the drivers of energy infrastructure. The paper explores the transitions of how Nigerians managed to obtain the vast majority of energy from food calories and traditional biomass, to the broad portfolio of energy sources that is in use today.
LED (Light-Emitting Diode) Road Lighting in Practice: An Evaluation of Compliance with Regulations and Improvements for Further Energy Savings
Annika K. Jägerbrand
November 27, 2018 (v1)
Subject: Energy Policy
Keywords: Energy Efficiency, luminance, pedestrian and bicycle paths, roads, uniformity
Light-emitting diode (LED) road lighting has been widely implemented in recent years, but few studies have evaluated its performance after installation. This study investigated whether LED road lighting complies with minimum regulations in terms of traffic safety and whether improvements for energy efficiency are possible. Average road surface luminance (L), overall luminance uniformity (Uo), longitudinal luminance uniformity (UI), power density (PD) and normalised power density (PN) were evaluated for 14 roads (seven designed for vehicular traffic and seven for pedestrians and bicycles). Energy savings were calculated as the percentage reduction to the minimum level of the existing lighting class or a lower lighting class and by applying a dimming schedule. The results showed that LED road lighting for vehicular traffic roads generally fulfilled the requirements, whereas that for pedestrian and bicycle roads generally corresponded to the lowest lighting class for L, and often did not... [more]
Energy Research in Airports: A Review
Sergio Ortega Alba, Mario Manana
November 27, 2018 (v1)
Subject: Energy Policy
Keywords: airports, Combined heat and power (CHP) plants, energy benchmarking, energy building, energy conservation, energy consumption, Energy Efficiency, energy modeling, energy simulation, renewable sources
The main function of an airport is to provide access to air transport both for passengers and cargo. The number of air operations over the past 20 years has increased rapidly, and this has led to a rise in the energy needs of airports to satisfy this demand. As a consequence, the cost of energy supply for airport managers has escalated. At the same time, global energy consumption has soared due to the needs of emerging countries like China and India, with the consequent environmental impact. This complex scenario of environmental and economic factors has made airport managers become aware of the need to reduce energy consumption as well as a more efficient use of it. The aim of this article is to analyze the main behaviors and energy trends at airports in more recent research, starting with the description of the main energy sources and consumers, the application of energy conservation and energy efficiency measures, the establishment of energy indicators and benchmarking between airpo... [more]
Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery
Ivan Korolija, Richard Greenough
November 27, 2018 (v1)
Keywords: climate, cooling tower, dry condenser, Energy Efficiency, organic Rankine cycle (ORC), recuperator, waste heat
This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC) used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition... [more]
Economic Impact of Intelligent Dynamic Control in Urban Outdoor Lighting
Igor Wojnicki, Sebastian Ernst, Leszek Kotulski
November 27, 2018 (v1)
Keywords: dynamic lighting, Energy Efficiency, intelligent control, intelligent lighting, lighting, outdoor lighting, street lighting
This paper presents and compares the possible energy savings in various approaches to outdoor lighting modernization. Several solutions implementable using currently-available systems are presented and discussed. An innovative approach using real-time sensor data is also presented in detail, along with its formal background, based on Artificial Intelligence methods (rule-based systems) and graph transformations. The efficiency of all approaches has been estimated and compared using real-life data recorded at an urban setting. The article also presents other aspects which influence the efficiency and feasibility of intelligent lighting projects, including design quality, design workload and conformance to standards.
Towards Highly Energy-Efficient Roadway Lighting
Adam Sȩdziwy, Leszek Kotulski
November 27, 2018 (v1)
Subject: Energy Policy
Keywords: computational intelligence, Energy Efficiency, large-scale photometric computations, lighting design, smart grid
The reports presented by consulting firms show that annual energy costs generated by 340 million streetlights are expected to reach $23.9 to $42.5 billion by 2025. Those numbers reveal a motivation behind the research aiming at optimizing outdoor lighting energy efficiency. They show that even a small unit improvement can yield large benefits due to the effect of scale. The development of solid state lighting solutions enables highly effective modernization of street lighting installations. It allows obtaining power saving not only by replacing high pressure lamps with LEDs but also by improving a design quality and by introducing a dynamic street lighting control. Both methods, however, are not feasible for industry-standard software tools due to the significant complexity related to a configuration optimization, especially for large-scale projects. The goal of this article is presenting the workaround to the complexity issue, which is based on application of graph methods. They enabl... [more]
Optimization of the Heating System Use in Aged Public Buildings via Model Predictive Control
Edorta Carrascal, Izaskun Garrido, Aitor J. Garrido, José María Sala
November 27, 2018 (v1)
Keywords: Energy Efficiency, energy-saving policies, Model Predictive Control, RC-thermal model, system characterization, thermal comfort
This work presents the implementation of a Model Predictive Control (MPC) scheme used to study the improvement of the thermal quality in aged residential buildings without any rehabilitation. The controller manages the heating system of an experimentally characterized model of a residential dwelling in a social block built during the decade of the 1960s located in the neighborhood of Otxarkoaga (Bilbao, Spain), so as to obtain an optimal energy efficiency performance. Due to the characteristics of the construction in those days, this kind of buildings suffer problems related to the use of awkward building materials and inefficient heating systems. A comparison with traditionally used ON-OFF hysteresis control is presented in order to demonstrate the energetic improvement provided by the MPC scheme. Besides, the variation of different parameters of the MPC is also studied to determine its influence over the energy consumption and comfort conditions.
Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump
Ioan Sarbu, Calin Sebarchievici
November 27, 2018 (v1)
Keywords: Energy Efficiency, GCHP, geothermal energy, radiant floor heating, radiator heating, simulation models
A ground-coupled heat pump (GCHP) system used to provide the space heating for an office room is a renewable, high performance technology. This paper discusses vapour compression-based HP systems, briefly describing the thermodynamic cycle calculations, as well as the coefficient of performance (COP) and CO₂ emissions of a HP with an electro-compressor and compares different heating systems in terms of energy consumption, thermal comfort and environmental impact. It is focused on an experimental study performed to test the energy efficiency of the radiator or radiant floor heating system for an office room connected to a GCHP. The main performance parameters (COP and CO₂ emissions) are obtained for one month of operation of the GCHP system, and a comparative analysis of these parameters is presented. Additionally, two numerical simulation models of useful thermal energy and the system COP in heating mode are developed using the Transient Systems Simulation (TRNSYS) software. Finally, t... [more]
Showing records 1 to 25 of 37. [First] Page: 1 2 Last
[Show All Keywords]