Browse
Keywords
Records with Keyword: Energy
Showing records 1 to 25 of 314. [First] Page: 1 2 3 4 5 Last
Waste-heat upgrading from alkaline and PEM electrolyzers using heat pumps
Aldwin-Lois Galvan-Cara, Dominik Bongartz
June 27, 2025 (v1)
Keywords: Electric heating, Energy, Hydrogen, Modelling, Optimization
The use of waste heat from electrolysis can significantly increase process efficiency. Alkaline and PEM electrolyzers, the most mature technologies, produce low-temperature waste heat. Most studies focus on using this waste heat for low-temperature applications like district heating. Alternatively, this waste heat can be upgraded to a temperature that can be usable in the chemical industry, e.g., for steam generation. The combination of an alkaline electrolyzer with a heat pump has been recently investigated to supply both hydrogen and medium-temperature heat. Optimizing electrolyzers for both hydrogen and heat production (combined design) has been shown to have advantages over optimizing for hydrogen only and upgrading the waste heat a posteriori (separate design). However, the effects of electrolyzer pressure and hydrogen compression were not considered, and it remains unclear if similar benefits apply to PEM electrolyzers. This work further analyzes the combined system (i.e., electr... [more]
Life Cycle Assessment of Synthetic Methanol Production: Integrating Alkaline Electrolysis and Direct Air Capture Across Regional Grid Scenarios
Ankur Singhal, Pratham Arora
June 27, 2025 (v1)
A transition to low-carbon fuels is integral in addressing the challenge of climate change. An essential transformation is underway in the transportation sector, one of the primary sources of global greenhouse gas emissions. The electrofuels that represent methanol synthesis via power-to-fuel technology have the potential to decarbonize the sector. This paper outlines a critical comprehensive life cycle assessment for electrofuels, with this study focusing on the production of synthetic methanol from renewable hydrogen from water electrolysis coupled with carbon from the direct air capture (DAC) process. This study has provided a comparison of the environmental impacts of synthetic methanol produced from grids of five regions (India, the US, China, Switzerland, and the EU) with conventional methanol from coal gasification and natural gas reforming. The results from this impact assessment show a high dependency of environmental scores on the footprint of the grid. Switzerland, with its... [more]
Control of the WWTP Water Line Using Traditional and Model Predictive Approaches
Gheorghe A. Bodescu, Romina G. Daraban, Norbert B. Mihály, Castelia E. Cristea, Elisabeta C. Timi?, Anton A. Kiss, Vasile M. Cristea
June 27, 2025 (v1)
Keywords: Effluent Quality, Energy, Greenhouse Gas Emissions, Model Predictive Control, Supervisory Control, Wastewater
Wastewater treatment and resources recovery from large wastewater flowrates of the municipalities and circular bio-based economy ask for efficient control solutions. The paper presents solutions for operating the wastewater treatment plant, based on advanced process control methods aimed to merge the benefits of the cooperation between the lower-level regulatory control loops and the upper-level model predictive control strategy. The lower-level is designed to regulate the nitrification in the aerated bioreactors by controlling the Dissolved Oxygen or the ammonia concentration and to control the denitrification in the anoxic reactor by controlling the nitrates concentration. The model predictive controller either sets the setpoints of the regulatory layer or directly manipulates the air and nitrate recycle flow rates. The plant performance results obtained using the regulatory Proportional and Integral control are compared to the direct or the supervisory model predictive control outco... [more]
Pipeline Network Growth Optimisation for CCUS: A Case Study on the North Sea Port Cluster
Victoria Brown, Joseph Hammond, Diarmid Roberts, Solomon Brown
June 27, 2025 (v1)
Keywords: Carbon Capture, Carbon Dioxide Capture, Energy, Genetic Algorithm, Modelling and Simulations
By 2050 around 12% of cumulative emissions reductions will come from Carbon Capture, Utilisation and Storage (CCUS) making it an essential component in the path towards net zero [1]. Focus will initially be on the retrofitting of fossil fuel power plants, which will shift to hard-to-decarbonise industries such as iron, steel, and concrete [1]. Such industries are often grouped together in industrial clusters. Comprising both large and small point sources concentrated over a defined geographical area, industrial clusters offer an opportunity to maximise the impact of CCUS whilst also improving economic feasibility [2]. The North Sea Port (NSP) cluster an example of this. Within the NSP cluster an initial set of five emitters are to join a capture, conditioning, and transport network by 2030. From there other emitters within the area will be able to join incrementally to 2050 [3]. However, the emitters who join and the timing of their connection will have a significant effect on the evo... [more]
A Novel Global Sequence-based Mathematical Formulation for Energy-efficient Flexible Job Shop Scheduling Problem
D. Li, T.C. Zheng, J. Li
June 27, 2025 (v1)
With increasing emphasis on energy efficiency, more researchers are focusing on energy-efficient flexible job shop scheduling problems. Mathematical programming is a commonly used optimization method for such scheduling challenges, offering the advantages of achieving global optima and serving as a foundation for other approaches. However, current mathematical programming formulations face several challenges, including insufficient consideration of various forms of energy consumption and low efficiency, particularly in handling large-scale instances, which struggle to converge. In this study, we propose a novel global sequence-based approach with high computational efficiency. In this model, immediate precedence relationships are identified using constraints, enabling the precise determination of idle durations within any idle slots. The proposed formulation achieves a significant reduction in energy consumption by up to 20% relative to other formulations. Furthermore, it successfully... [more]
A Transparent Techno-Enviro-Economic Assessment of a Coal-Fired Power Plant: Integrating Biomass Co-Firing and CO2 Sequestration Technology in a Carbon-Priced Environment
N. F. E. Nor Fadzil, N. Abdul Manaf, N. Shah
June 27, 2025 (v1)
Subject: Environment
The integration of carbon capture and storage (CCS) into coal and biomass co-firing systems (CBCCS) offers a promising solution for reducing carbon emissions in electricity generation. This study evaluates hypothetical scenarios in Malaysia and Indonesia, focusing on techno-economic-environmental transparency. The analysis shows a negligible change in plant net efficiency (~1%) across biomass co-firing ratios of 5-20% in both countries. The capture penalty increases at higher biomass ratios, particularly at 20% co-firing, due to higher auxiliary power demands and steam extraction. As biomass share increases, net CO2 emissions decrease by an average of 43% in Malaysia and 34% in Indonesia. Economic evaluations show a positive revenue increase for Malaysia at a 20% co-firing ratio, while Indonesia faces a revenue deficit (0.6%) under the same condition, mainly due to an unattractive carbon price and feed-in tariff from 2027 onward. Malaysia faces a higher risk of stranded assets due to e... [more]
Assessing Distillation Processes through Sustainability Indicators Aligned with the Sustainable Development Goals
Ömer Faruk Karaman, Peter Lang, Laszlo Hegely
June 27, 2025 (v1)
Subject: Environment
A generally applicable framework for the evaluation of the sustainability of distillation processes is proposed by aligning indicators directly to selected sustainable development goals (SDGs) created by the United Nations. The indicators are related to the goals good health and well-being (SDG 3), clear water and sanitation (SDG 6), affordable and clean energy (SDG 7), decent work and economic growth (SDG 8), industry, innovation and infrastructure (SDG 9), responsible consumption and production (SDG 12), climate action (SDG 13) and life below water (SDG 14). A total of 12 sustainability indicators, including human toxicity potential, wastewater generation, water consumption, renewable energy share, energy demand, material footprint, profit, waste generation, recycling ratio of waste, greenhouse gas emission, eutrophication potential and acidification potential are assigned to selected SDGs. The application of the indicators is illustrated by two case studies: a batch (BD) and a conti... [more]
Energy Water Nexus Resilience Analysis Using Integrated Resource Allocation Approach
Hesan Elfaki, Mohammad Lameh, Dhabia M. Al-Mohannadi
June 27, 2025 (v1)
Keywords: Energy, Nexus, Resilience, Water
This work presents a macroscopic, high-level representation of the interconnected nexus system, utilizing a resource allocation model to capture the interactions between the power and water subsystems. The model is employed to assess the system's performance under various external stressor impact scenarios, determining the thresholds at which the system can no longer maintain a continuous supply of functional services (i.e. power and water), which reveal the system's vulnerabilities. Resilience metrics are incorporated to interpret these results and characterize the nexus performance. The proposed methodology is generalizable, and its capabilities will be demonstrated through a case study on the energy-water nexus in the Gulf Cooperation Council region.
Real-time carbon accounting and forecasting for reduced emissions in grid-connected processes
Rafael Castro-Amoedo, Alessio Santecchia, Henrique A. Matos, François Maréchal
June 27, 2025 (v1)
Keywords: Algorithms, Energy, Energy Systems, Flexible operations, Grid digitalization, Industry 40, Load shifting, Modelling, Real-time emissions
Real-time carbon accounting is crucial for advancing policies that effectively meet sustainability objectives. This work introduces a carbon tracking tool specifically designed for the European electricity grid. The tool collects hourly data on electricity consumption and generation, cross-border power exchanges, and weather information to assess the real-time environmental effects of electricity use, employing locally-specific emission factors for the generation sources. It utilizes weather data from various stations across Europe to produce week-ahead forecasts of carbon intensity in the grid. Predictions are created using a random forest regressor, integrated within the optimal controller of an operational industrial batch process. This prediction-based optimizer seeks to reduce total emissions tied to the process schedule's electricity consumption by implementing a rolling horizon strategy. By leveraging enhanced energy flexibility, the controller provides significant opportunities... [more]
Designing for the Future: The Role of Process Design in Decarbonization and Energy Transition
M. M. Faruque Hasan
August 16, 2024 (v2)
Keywords: Carbon Capture, Decarbonization, Energy, Energy Efficiency, Energy Transition, Process Design, Process Synthesis
The overarching goal of process design (Figure 1) is to find technologically feasible, operable, economically attractive, safe and sustainable processing pathways and process configurations with specifications for the connectivity and design of unit operations that perform a set of tasks using selected functional materials (e.g., catalysts, solvents, sorbents, etc.) to convert a set of feed-stocks or raw materials into a set of products with desired quality at a scale that satisfies the demand. Process synthesis and integration can further screen, optimize and improve these pathways for given techno-econo-environmental targets or objectives. These objectives may include, but are not limited to, minimizing the overall investment and processing costs, minimizing the energy consumption, minimizing the emissions or wastes, maxim-zing the profit, and enhancing the safety, operability, controllability, flexibility, circularity, and sustainability, among others... (ABSTRACT ABBREVIATED)
Sustainable Aviation Fuels (SAF) from Ethanol: An Integrated Systems Modeling Approach
Madelynn J. Watson, Aline V. da Silva, Pedro G. Machado, Celma O. Ribeiro, Cláudio A.O. Nascimento, Alexander W. Dowling
August 16, 2024 (v2)
Subject: Environment
This work explores the economic and environmental opportunities for sustainable aviation fuel (SAF) in the Brazilian sugarcane industry. Brazil was one of the first countries to use biomass fuels for transportation and is currently the 2nd largest producer of the world’s bioethanol. Bioethanol produced from sugarcane can be upgraded to SAF via the American Society for Testing and Materials (ASTM)-certified pathway alcohol-to-jet (ATJ); however, at least two challenges exist for commercial implementation. First, technologies to produce bio-jet fuels cost more than their conventional fossil-based counterparts. Second, there is considerable uncertainty regarding returns on investment as the sugar and ethanol markets have been historically volatile. As such, we propose a new optimization model to inform risk-conscious investment decisions on SAF production capacity in sugarcane mills. Specifically, we propose a linear program (LP) to model an integrated sugarcane mill that can produce suga... [more]
Uncertainty and Complexity Considerations in Food-Energy-Water Nexus Problems
Marcello Di Martino, Patrick Linke, Efstratios N. Pistikopoulos
August 16, 2024 (v2)
Subject: Environment
Keywords: Design Under Uncertainty, Energy, Environment, Food & Agricultural Processes, Surrogate Model, Water
The food-energy-water nexus (FEWN) has been receiving increasing interest in the open literature as a framework to address the widening gap between natural resource availability and demand, towards more sustainable and cost-competitive solutions. The FEWN aims at holistically integrating the three interconnected subsystems of food, energy and water, into a single representative network. However, such an integration poses formidable challenges due to the complexity and multi-scale nature of the three subsystems and their respective interconnections. Additionally, the significant input data uncertainty and variability, such as energy prices and demands, or the evaluation of emerging technologies, contribute to the system’s inherent complexity. In this work, we revisit the FEWN problem in an attempt to elucidate and address in a systematic way issues related to its multi-scale complexity, uncertainty and variability. In particular, we provide a classification of the sources of data and te... [more]
Resource Integration Across Processing Clusters: Designing a Cluster of Clusters
Mohammad Lameh, Dhabia Al-Mohannadi, Patrick Linke
August 16, 2024 (v2)
Subject: Environment
Achieving worldwide sustainable development is a practical challenge that demands an efficient management of resources across their entire value chains. This practical task requires the optimal selection of pathways for extracting, processing, and transporting resources to meet the demands in different geographic regions at minimal economic cost and environmental impact. This work addresses the challenge by proposing a systematic framework for designing resource-processing networks that can be applied to resource management problems. The framework considers the integration and resource exchange within and across multiple processing clusters. It allows for the life cycle assessment of the environmental and economic impacts of the defined value chains, and design accordingly the different processing and transport systems from extraction to final use. The proposed representation and optimization model are demonstrated in a case study to assess the impact of energy transition under decarbo... [more]
Industrial Biosolids from Waste to Energy: Development of Robust Model for Optimal Conversion Route - Case Study
Hesan Elfaki, Dhabia M. Al-Mohannadi
August 16, 2024 (v2)
Keywords: Biosolids, Energy, Simulation, Utilization
Utilizing sustainable energy sources is crucial for expanding the range of solutions available to meet the growing energy demand and reducing reliance on environmentally damaging and depleting conventional fuels. Biosolids, a type of biomass, are generated as secondary effluent during wastewater treatment process in municipal and industrial sites. These solids possess the potential to serve as a sustainable energy source due to their richness of carbon. For an extended period, biosolids have been landfilled, even though it can be considered a wasteful use of a precious resource and a possible mean for contamination to the food supply chain. This has served as an extra impetus to investigate the potential for harnessing the capabilities of these substances. While many research studies have looked at different ways to put biomass waste to use, very little has been written on biosolids, especially those derived from industrial sources. This research assesses the feasibility of transformin... [more]
Biogas Valorization from a Process Synthesis Perspective: Heat and Work Integration to Maximize CO2 Conversion
Baraka C. Sempuga, Selusiwe Ncube
August 16, 2024 (v2)
Subject: Materials
Keywords: Carbon Dioxide, Energy, Entropy Analysis, Methane Reforming, Minimizing CO2 Emissions, Optimization, Process Synthesis, Target Material Balance, Work Analysis
Biogas is often considered as a source of renewable energy, for heat and power production. However, biogas has greater promise as a source of concentrated CO2 in addition to methane, making it a rich supply of carbon and hydrogen for the generation of fuel and chemicals. In this work, we use the concept of attainable region in the enthalpy-Gibbs free energy space to identify opportunities for effective biogas valorization that maximizes the conversion of CO2. The AR concept allows us to study a chemical process without knowing the exact reaction mechanism that the species in the process use. Deriving Material Balance equations that relate a reactive process's output species to its input species is sufficient to identify process limits and explore opportunities to optimize its performance in terms of material, energy, and work. The conversion of biogas to valuable products is currently done in two steps; the high temperature and endothermic reformer step, followed by the low temperatur... [more]
CO2 Mitigation in Chemical Processes: Role of Process Recycle Optimization
Diane Hildebrandt, James Fox, Neil Stacey, Baraka C. Sempuga
August 15, 2024 (v2)
Subject: Environment
Keywords: Carbon Dioxide, Energy, Entropy Analysis, Methane Reforming, Minimizing CO2 Emissions, Optimization, Process Material Balance, Process Synthesis, Target Material Balance, Work Analysis
In designing low-carbon processes, the unintended emission of CO2 remains a significant concern due to its global environmental impact. This paper explores carbon management within chemical processes, specifically examining the correlation between the process material balance (PMB) and CO2 emissions to understand and identify the potential for reducing these emissions. We interrogate the foundational issue of carbon discharge by analyzing the interplay among mass, energy, and entropy balances, which collectively influence the PMB. We introduce the concept of the Target Material Balance (TMB), which represents the material balance of a process corresponding to minimum CO2 emissions within the given constraints. We could ask what decisions in the design and operation of processes result in higher CO2 emissions than the TMB. We will focus on the interaction between reactions and recycles and how the arrangement of recycles in processes can inadvertently change the PMB, thereby increasing... [more]
Connecting the Dots: Push and Pull between Technology R&D and Energy Transition Modeling
Justin A. Federici, Dimitri J. Papageorgiou, Robert D. Nielsen
August 15, 2024 (v2)
Subject: Energy Policy
This paper discusses the symbiotic relationship between technology research and development (R&D) and energy transition modeling. On the one hand, energy system modeling has a noteworthy history of providing macroscopic views and critical insights concerning the role that myriad technologies may play in the future energy system. On the other hand, R&D can lead to both incremental and disruptive technological advances that can shape energy transition planning. In this work, we focus on the bidirectional flow of information between the two with a particular focus on highlighting the potential role of carbon capture, storage, and sequestration technology.
Transitioning towards Net-Zero Emissions in Chemical and Process Industries: A Holistic Perspective
Peter Glavič, Zorka Novak Pintarič, Helena Levičnik, Vesna Dragojlović, Miloš Bogataj
January 12, 2024 (v1)
Subject: Environment
Keywords: Biomass, cement, chemicals, climate, emissions, Energy, metals, net zero, process industries, waste
Given the urgency to combat climate change and ensure environmental sustainability, this review examines the transition to net-zero emissions in chemical and process industries. It addresses the core areas of carbon emissions reduction, efficient energy use, and sustainable practices. What is new, however, is that it focuses on cutting-edge technologies such as biomass utilization, biotechnology applications, and waste management strategies that are key drivers of this transition. In particular, the study addresses the unique challenges faced by industries such as cement manufacturing and highlights the need for innovative solutions to effectively reduce their carbon footprint. In particular, the role of hydrogen as a clean fuel is at the heart of revolutionizing the chemical and process sectors, pointing the way to cleaner and greener operations. In addition, the manuscript explores the immense importance of the European Green Deal and the Sustainable Development Goals (SDGs) for the... [more]
Advancement in Microbial Fuel Cells Technology by Using Waste Extract as an Organic Substrate to Produce Energy with Metal Removal
Ghada Mohamed Aleid, Anoud Saud Alshammari, Alamri Rahmah Dhahawi Ahmad, Fida Hussain, Sang-Eun Oh, Akil Ahmad, Mohamad Nasir Mohamad Ibrahim, Khalid Umar
September 21, 2023 (v1)
Subject: Biosystems
Keywords: Energy, heavy metals, microbial fuel cell, organic substrate, Wastewater
Energy generation using microbial fuel cells (MFC) and removing toxic metal ions is a potentially exciting new field of study as it has recently attracted a lot of interest in the scientific community. However, MFC technology is facing several challenges, including electron production and transportation. Therefore, the present work focuses on enhancing electron generation by extracting sugarcane waste. MFC was successfully operated in a batch mode for 79 days in the presence of 250 mg/L Pb2+ and Hg2+ ions. Sugarcane extract was regularly fed to it without interruption. On day 38, the maximum current density and power density were recorded, which were 86.84 mA/m2 and 3.89 mW/m2, respectively. The electrochemical data show that a sufficient voltage generation and biofilm formation produce gradually. The specific capacitance was found to be 11 × 10−4 F/g on day 79, indicating the steady growth of biofilm. On the other hand, Pb2+ and Hg2+ removal efficiencies were found to be 82% and 74.85... [more]
The Industrial Digital Energy Twin as a Tool for the Comprehensive Optimization of Industrial Processes
Alejandro Rubio-Rico, Fernando Mengod-Bautista, Andrés Lluna-Arriaga, Belén Arroyo-Torres, Vicente Fuster-Roig
September 21, 2023 (v1)
Keywords: digital twin, Energy, Energy Efficiency, productive flexibility, smart manufacturing
Industrial manufacturing processes have evolved and improved since the disruption of the Industry 4.0 paradigm, while energy has progressively become a strategic resource required to maintain industrial competitiveness while maximizing quality and minimizing environmental impacts. In this context of global changes leading to social and economic impact in the short term and an unprecedented climate crisis, Digital Twins for Energy Efficiency in manufacturing processes provide companies with a tool to address this complex situation. Nevertheless, already existing Digital Twins applied for energy efficiency in a manufacturing process lack a flexible structure that easily replicates the real behavior of consuming machines while integrating it in complex upper-level environments. This paper presents a combined multi-paradigm approach to industrial process modeling developed and applied during the GENERTWIN project. The tool allows users to predict energy consumption and costs and, at the sa... [more]
Construction of Water Vapor Stable Ultramicroporous Copper-Based Metal−Organic Framework for Efficient CO2 Capture
Fengfan Yang, Xiaolu Wang, Jiayue Tian, Xusheng Wang, Linfeng Liang
June 13, 2023 (v1)
Subject: Materials
Keywords: Carbon Dioxide, Energy, environment, MOFs, porous material
It is quite essential to obtain an excellent CO2 adsorption capacity, CO2 adsorption selectivity and water vapor stability at the same time for practical CO2 capture after combustion. Through the combination of ultramicropore and the high density of CO2-philic sites without OMSs, an ultra-microporous Cu-based metal−organic framework has been designed and synthesized, featuring a high CO2 capacity (99 cm3 g−1 and 56.6 cm3 g−1 at 273 K and 298 K, respectively), high selectivity over N2 (118 at a scale of CO2/N2 15/85, 298 K) and excellent water vapor stability, simultaneously. Theoretical calculations indicate that neighboring ketonic O atoms with suitable distance play vital roles in boosting CO2 selective capture.
Comparative Analysis of Three WEEE Management Scenarios Based on LCA Methodology: Case Study in the Municipality of Iasi, Romania
Simona Cecilia Ghiga, Isabela Maria Simion, Cătălina Filote, Mihaela Roșca, Raluca Maria Hlihor, Maria Gavrilescu
June 13, 2023 (v1)
Subject: Environment
Keywords: e-waste, Energy, environmental impact, Life Cycle Assessment, recovery, waste management
The increasing consumption of electrical and electronic equipment (EEE), correlated with the fast innovation pace in this field, generates a large amount of annual waste. The current established management practices cannot keep up with it, and the results are of increased significance given the negative effects on the environment and human health. Thus, the current study aimed to analyze the environmental impact of three different scenarios of waste electrical and electronic equipment (WEEE) management, following population awareness campaigns regarding its collection in the Municipality of Iasi, Romania. Data processing was carried out considering Life Cycle Assessment (LCA) methodology with the established functional unit for each scenario according to the collected amount. The results were quantified using the CML2001 and ReCiPe methods and showed that the highest environmental impact was obtained for scenario II (S2) (1.59 × 10−7 pers. equiv. using the CML2001 method and 32.7 pers.... [more]
Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery
Marzena Smol
May 24, 2023 (v1)
Subject: Materials
Keywords: CE, circular economy, Energy, phosphorus, raw materials, Wastewater, wastewater treatment plant, Water, WWTP
Nowadays, the main challenge for industrial and municipal enterprises is related to the tightening regulations and recommendations regarding environmental protection, which have been included in the circular economy (CE) package. Enterprises from all sectors, including water and sewage management, are obliged to actively participate in the CE transition. Modern wastewater treatment plants (WWTPs) should include actions aimed at a more sustainable use of available resources (water, energy, raw materials) to contribute to the protection of natural resources. In this way, they can be treated as resource facilities. This paper proposes a conceptual framework for a ‘Wastewater Treatment Plant of the Future’ that includes several technological solutions that take into account circular management of waste streams generated in WWTPs, such as wastewater (WW), sewage sludge (SS) and sewage sludge ash (SSA). Many actions have been already taken to modernize and build WWTPs that can respond to cur... [more]
Environmental Degradation by Energy−Economic Growth Interlinkages in EU Agriculture
Eleni Zafeiriou, Spyridon Galatsidas, Garyfallos Arabatzis, Stavros Tsiantikoudis, Athanasios Batzios
May 24, 2023 (v1)
Subject: Environment
Keywords: agricultural income, ARDL, Energy, EU
Energy has the most significant input to agricultural production. The EU’s effort to produce a carbon-neutral economic entity necessitates changes in the energy mix used for agricultural production. Therefore, we employ different variables, in particular, the emissions generated by energy sources, namely coal, natural gas, and diesel gas and their interlinkages with the GDP share generated from agriculture. The data are annual and refer to the period 1970−2020. The ARDL methodology is the econometric tool employed. The year 1990 is identified as a statistically significant break point for all variables, while for the cointegrating equation, the year 2009 appears to play a significant role. Emissions generated by coal appear to play a vital role in the GDP share generated by agriculture and, therefore, should be the main focus of the policy measures taken. Coal should be replaced by other renewable sources or the use of technologies by farmers that improve energy efficiency in order to... [more]
Decoupling Analysis of Energy-Related Carbon Dioxide Emissions from Economic Growth in Poland
Zbigniew Gołaś
May 23, 2023 (v1)
Subject: Environment
Keywords: CO2 emissions, decoupling, economic growth, Energy, fossil fuels, LMDI, Poland
This paper addresses the conditions behind energy-related carbon dioxide (CO2) emissions in Poland following its accession to the European Union. The study analyzed some energy, fossil fuel, economic, and environmental indicators, such as energy use, CO2 emissions, driving factors, decoupling elasticity status, and decoupling effort status. It relied on the Kaya identity and Logarithmic Mean Divisia Index (LMDI) in determining the drivers of CO2 emissions. As shown by the results, between 2004 and 2020, energy consumption in Poland grew at an average annual rate of 0.8%, while fossil fuel carbon emissions declined at 0.7% per year. Energy intensity was found to be the key force behind the reduction in CO2 emissions, whereas rapid economic growth was the main driver of CO2 emissions. While other factors, i.e., carbon intensity, energy mix, and population, also contributed to reducing the emissions, they had a much smaller—if not marginal—effect. In turn, the decoupling elasticity analys... [more]
Showing records 1 to 25 of 314. [First] Page: 1 2 3 4 5 Last
[Show All Keywords]