Browse
Keywords
Records with Keyword: Adsorption
Showing records 1 to 25 of 240. [First] Page: 1 2 3 4 5 Last
Highly Adsorptive Organic Xerogels for Efficient Removal of Metformin from Aqueous Solutions: Experimental and Theoretical Approach
S. A. Aguilar-Maruri, D. Perera-Triana, Elizabeth Flórez, Angélica Forgionny, Gabriela Palestino, C. F. A. Gómez-Durán, Raúl Ocampo-Pérez
August 23, 2024 (v1)
Subject: Materials
Keywords: Adsorption, metformin, xerogels
Metformin, widely prescribed to treat type 2 diabetes for its effectiveness and low cost, has raised concerns about its presence in aqueous effluents and its potential environmental and public health impacts. To address this issue, xerogels were synthesized from resorcinol and formaldehyde, with molar ratios ranging from 0.05 to 0.40. These xerogels were thoroughly characterized using FT-IR, SEM, TGA, and TEM analyses. Batch adsorption experiments were performed with standard metformin solutions at concentrations of 50 and 500 mg/L, varying pH, and temperature to determine the adsorption isotherms of the synthesized xerogels. The adsorption data revealed a maximum adsorption capacity of 325 mg/g at pH 11 and 25 °C. Quantum chemical calculations revealed that electrostatic interactions govern metformin adsorption onto xerogels. The xerogels’ adsorption capacity was evaluated in competitive systems with CaCl2, NaCl, MgCl2, and synthetic urines. Reuse cycles demonstrated that xerogels cou... [more]
Utilizing Date Palm Leaf Biochar for Simultaneous Adsorption of Pb(II) and Iodine from Aqueous Solutions
Essam R. I. Mahmoud, Hesham M. Aly, Noura A. Hassan, Abdulrahman Aljabri, Asim Laeeq Khan, Hashem F. El-Labban
August 23, 2024 (v1)
Keywords: Adsorption, biochar, iodine, lead ion, pyrolysis
This study addresses the environmental and health hazards posed by Pb(II) and iodine, two significant contaminants. The objective was to explore the adsorption of these substances from aqueous solutions using biochar derived from the leaf midribs of the date palm through a slow pyrolysis process. The pyrolysis was conducted in two stages within a vacuum furnace: initially at 300 °C for 1 h followed by overnight cooling, and then at 600 °C with a similar cooling process. The resulting biochar was characterized for its microstructural features and functional groups using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. It exhibited a porous structure with large numbers of pores (20 to 50 μm in size) and functional groups including O-H, C-H, and C=C, which are integral to its adsorption capabilities. For the adsorption studies, a 100 ppm Pb(II) ion solution was treated with varying amounts of biochar (20, 40, 60, and 80 mg) for 24 h. In parallel, iod... [more]
Adsorption of Glyphosate in Water Using Iron-Based Water Treatment Residuals Derived from Drinking Water Treatment Plants
Fuguo Qiu, Chaoran Li, Shunxi Wang, Shuang Li
August 23, 2024 (v1)
Keywords: Adsorption, glyphosate, kinetics, thermodynamics, water treatment residual
Glyphosate, a broad-spectrum herbicide, poses a potential threat to human health and the ecosystem due to its toxicity. In this study, iron-based water treatment residuals (Fe-WTRs) were employed for glyphosate removal. The adsorption kinetics, isotherms, and thermodynamics, as well as the effects of pH, Fe-WTR particle size, and temperature, were explored. The results show that Fe-WTRs are an effective adsorbent for glyphosate adsorption, and the maximum uptake capacity was recorded as 30.25 mg/g. The Fe-WTR surface was positively charged, and low-valent iron dominated under acidic conditions, favoring glyphosate adsorption. Furthermore, smaller Fe-WTR particles (<0.125 mm) showed a faster absorption rate and 20% higher adsorption capacity than larger particles (2−5 mm). The kinetic analysis indicated that the adsorption process exhibits a two-step profile, conforming to the pseudo-second-order model, and the thermodynamic analysis indicated that it is a spontaneous, endothermic, a... [more]
Removal of Cefuroxime from Soils Amended with Pine Bark, Mussel Shell and Oak Ash
Raquel Cela-Dablanca, Ainoa Míguez-González, Lucía Rodríguez-López, Ana Barreiro, Manuel Arias-Estévez, María J. Fernández-Sanjurjo, Esperanza Álvarez-Rodríguez, Avelino Núñez-Delgado
August 23, 2024 (v1)
Subject: Biosystems
Keywords: Adsorption, antibiotics, byproducts, desorption, soil
The global increase in antibiotics consumption has caused hazardous concentrations of these antimicrobials to be present in soils, mainly due to the spreading of sewage sludge (or manure or slurry) and wastewater, and they could enter the food chain, posing serious risks to the environment and human health. One of these substances of concern is cefuroxime (CFX). To face antibiotics-related environmental pollution, adsorption is one of the most widely used techniques, with cost-effective and environmentally friendly byproducts being of clear interest to retain pollutants and increase the adsorption capacity of soils. In light of this, in this work, three low-cost bioadsorbents (pine bark, oak ash, and mussel shell) were added to different soil samples (at doses of 12 and 48 t/ha) to study their effects on the adsorption of CFX. Specifically, batch experiments were carried out for mixtures of soils and bioadsorbents, adding a range of different antibiotic concentrations at a fixed ionic... [more]
Preparation of Bioaerogel from Iron-Rich Microalgae for the Removal of Water Pollutants
Xinqi Niu, Junhui Si, Binyi Chen, Qianting Wang, Sen Zeng, Zhixiang Cui
August 23, 2024 (v1)
Subject: Environment
Keywords: Adsorption, aerogel, microalgae, photo-Fenton, wastewater treatment
Microalgae-based materials have gained significant attention considering their rich resources, cost-effectiveness, and environmental friendliness. Herein, iron-rich microalgae (Chlorella pyrenoidosa, CP) were treated by hydrothermal reaction under alkaline conditions to remove the protoplast and obtain a hollow shell with an FexOy core inside. Then, the iron-rich microalgae-based aerogel (Fe-CP aerogel) was fabricated through a freeze-drying process. The as-prepared Fe-CP aerogel exhibited superior adsorption performance, and the maximum adsorption quantity for Cu2+ could reach 208.3 mg/g due to the synergistic adsorption of the hollow shell of CP cells and FexOy core. The Fe-CP aerogel also possessed super-hydrophilicity and displayed high separation efficiency (over 99%) when used for separating different oil/water emulsions. Moreover, the existence of FexOy endowed the Fe-CP aerogel with photo-Fenton activity, thus exhibiting excellent antifouling performance. The prepared Fe-CP aer... [more]
Behavior of a Mixture of Metals for Competiting Adsorption Sites of Untreated and Alkali-Treated Rice Husk
Ana Karen Ivanna Flores-Trujillo, Asunción Guadalupe Morales-Mendoza, Refugio Rodríguez-Vázquez
August 23, 2024 (v1)
Keywords: Adsorption, biosorbent, desorption, heavy metals, isotherms
Elements are released into water bodies, affecting the environment and human health. To address this problem, the adsorption-desorption capacity of untreated rice husk (URH) and rice husk treated with alkali (RHTA) for Cu(II), Pb(II), Fe(II), Cd(II), and Zn(II) was investigated. Analyses during the process were performed by X-ray diffraction (XRD), scanning electron microscopy, and elemental analysis by energy dispersive X-ray spectroscopy (SEM-EDS), as well as Fourier transform infrared spectroscopy (FTIR). Adsorption-desorption kinetics and isotherms were carried out. The FTIR analysis of RHTA revealed a lowering of intensity of the bonding signals (OH, C-O, CH2, CH3, SiO2, Si-OH) and loss of some signals due to the adsorbent-elements interaction. The adsorption on RHTA presented higher adsorption of Fe, followed by Pb, Zn, Cu, and Cd. Meanwhile, in URH, the adsorption was Fe > Pb > Cu > Zn and Cd. On the other hand, the desorption values for RHTA were Zn > Cd > Pb > Cu > and Fe and... [more]
Adsorption of Rhodamine B in Aqueous Solution by Mg/CS Composite Modified Attapulgite
Mei Zhang, Hanjie Chen, Ziying Bu, Ying Fang
August 23, 2024 (v1)
Subject: Materials
Keywords: Adsorption, attapulgite, chitosan, rhodamine B
The safety of people’s everyday water consumption has been gravely challenged by wastewater from printing and dyeing, however, research on effective contaminants removal from wastewater is encouraging. In this experiment, attapulgite modified with Mg2+ was calcined, and chitosan was added to create attapulgite composites. By refining the experimental parameters of the preparation, the adsorption performance of rhodamine B in wastewater was enhanced. A fully automated specific surface area and porosity investigation, a method known as X-ray diffraction, and nitrogen adsorption desorption equilibrium temperatures at 77 K were all performed. The original and composite attapulgite samples were evaluated using BET, Fourier transform infrared spectroscopy, and scanning electron microscopy. Composite materials were prepared using n (Mg2+)/m (AP) = 30 mmol/g, m (CS)/m (AP) = 1/3, a calcination temperature of 300 °C, and 1 h. After a series of adsorption experiments, manifesting that adding 0.2... [more]
Environmental Impact of Simulated Moving Bed (SMB) on the Recovery of 2,3-Butanediol on an Integrated Biorefinery
Marco E. Avendano, Jianpei Lao, Qiang Fu, Sankar Nair, Matthew J. Realff
August 16, 2024 (v2)
Subject: Environment
2,3 butanediol (BDO) has garnered recent interest due to the high titer concentrations that can be obtained through biochemical routes and its potential for efficient conversion into long-chain hydrocarbons. BDO separation, however, is challenging given its low volatility and high affinity towards water. In this study, two BDO separation pathways were compared, single distillation and combined simulated moving bed (SMB) adsorption with distillation. The separations were incorporated into a 2018 biorefinery design developed by the National Renewable Energy Laboratory (NREL) to produce renewable fuels from corn stover, with BDO as an intermediate and adipic acid as the co-product. The comparison was performed on the basis of sustainability, using lifecycle greenhouse gas (GHG) emissions as the metric. It was found that using a single distillation column gives GHG emissions of 48 gCO2e/MJ for the renewable fuel. This is lower than 93 gCO2e/MJ for petroleum fuel but is higher compared to t... [more]
Recovery of Ionic Liquid from the Model Solution Mixture Mimicking the Catalytically Hydrolyzed Cellulose Product Utilizing Amberlyst Ion-Exchange Resin
Chhabilal Regmi, Chidambaram Thamaraiselvan, Zhexi Zhu, Xianghong Qian, S. Ranil Wickramasinghe
June 24, 2024 (v1)
Keywords: Adsorption, Amberlyst, cation-exchange resin, desorption, ionic liquid, NaCl
The hydrolysis of cellulose using ionic liquid (IL) has been extensively studied but there is limited understanding of the removal of IL from the biomass hydrolysate. Finding a suitable method for the recovery and reuse of IL is one of the biggest challenges before its large-scale application. Selecting an appropriate combined recovery process is very important. This study proposed a facile ion-exchange combined method for the recovery of IL from the modeled cellulose hydrolysate mixture containing sugars as well as γ-valerolactone (GVL) via an adsorption−desorption mechanism using sulfonic acid cation-exchange (Amberlyst 15 (H)) resin. The results showed that the resin could adsorb more than 94% of 1-ethyl-3-methylimidazolium chloride [Emim]Cl IL at ambient conditions within a contact time of 20 min. The other coexisting constituents like glucose and GVL have no significant effect on the adsorption efficiency of IL. The adsorption of IL on Amberlyst 15 (H) resin was observed to be pse... [more]
Adsorption of Pesticides on Activated Carbons from Peach Stones
Souha Harabi, Sami Guiza, Ariadna Álvarez-Montero, Almudena Gómez-Avilés, Mohamed Bagané, Carolina Belver, Jorge Bedia
June 21, 2024 (v1)
Subject: Materials
Keywords: 2,4-dichlorophenoxyacetic acid, activated carbon, Adsorption, carbofuran, isotherms, kinetics, pesticides
This study analyzes the adsorption of two model pesticides, namely, 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran on activated carbons obtained by chemical activation with phosphoric acid of peach stones. The effect of the synthesis conditions on the surface area development was analyzed. The highest surface area was obtained with an impregnation time of 5 h, an impregnation ratio equal to 3.5, an activation temperature of 400 °C, and 4.5 h of activation time. Under these conditions, the maximum specific surface area was equal to 1182 m2·g−1 which confirms the high porosity of the activated carbon, predominantly in the form of micropores. The surface chemistry of this activated carbon was also characterized using pH at point of zero charge, scanning electron microscopy, and Fourier transform infrared spectroscopy. Both kinetics and equilibrium adsorption tests were performed. Adsorption kinetics confirmed that 2,4-D adsorption follows a pseudo first-order adsorption kinetic mod... [more]
The Influence of Wettability Effect and Adsorption Thickness on Nanoconfined Methane Phase Behavior: Vapor-Liquid Co-Existence Curves and Phase Diagrams
Guodai Wu, Chunlin Zeng, Lijun Cheng, Jinhua Luan, Ruigang Zhang, Ziwei Chen, Yu Pang, Zheng Sun
June 21, 2024 (v1)
Keywords: Adsorption, methane phase behavior, nanopores, vapor-liquid co-existence, wettability
Research interest in the behavior of methane inside nanopores has been growing, driven by the substantial geological reserves of shale gas and coalbed methane. The phase diagram of methane in nanopores differs significantly from its bulk state, influencing its existing form and pertinent physical properties—such as density and viscosity—at specific pressures and temperatures. Currently, there is a lack of effort to understand the nanoconfinement effect on the methane phase diagram; this is a crucial issue that needs urgent attention before delving into other aspects of nanoconfined methane behavior. In this study, we establish a fully coupled model to predict the methane phase diagram across various scales. The model is based on vapor-liquid fugacity equilibrium, considering the shift in critical pressure and temperature induced by pore size shrinkage and adsorption-phase thickness. Notably, our proposed model incorporates the often-overlooked factor of capillary pressure, which is gre... [more]
Ciprofloxacin Uptake from an Aqueous Solution via Adsorption with K2CO3-Activated Biochar Derived from Brewing Industry Bagasse
Víctor Francisco Meseguer, Juan Francisco Ortuño, María Isabel Aguilar, Mercedes Lloréns, Ana Belén Pérez-Marín, Emmanuel Fuentes
June 21, 2024 (v1)
Subject: Environment
Keywords: activated biochar, Adsorption, adsorption kinetic, bagasse, ciprofloxacin, isotherms
Ciprofloxacin (CPX), an antibiotic considered as an emerging contaminant, needs to be removed from aquatic environments. This work investigates the adsorption of CPX on K2CO3-activated biochar (AB). The biochar was obtained via the pyrolysis of barley bagasse from the brewing industry, and then it was activated with 2M of K2CO3. The activated biochar was characterised using FTIR spectroscopy and a pHPZC assay. Batch adsorption tests were performed to study the influence of pH and temperature on CPX sorption and to obtain kinetic and equilibrium data. The adsorption of CPX on AB was favoured by increasing the temperature from 10 °C to 55 °C, demonstrating the endothermic nature of the process. The level of CPX removal after 24 h of contact and at pH 3.5 was 82% of that obtained when equilibrium was reached. The kinetic study showed that the adsorption is well described by the Elovich and the Bangham kinetic models. The adsorption is favourable, and the best fits to the experimental equi... [more]
Synergetic Adsorption of Dyes in Water by Three-Dimensional Graphene and Manganese Dioxide (PU@RGO@MnO2) Structures for Efficient Wastewater Purification
Shirong Zong, Jijun Jiang, Guodong Wang, Jin Zhong, Chunlan Tang, Lingxiang Zhou, Fan Yang, Wei Yan
June 21, 2024 (v1)
Subject: Environment
Keywords: Adsorption, manganese dioxide, three-dimensional graphene, wastewater treatment, water purification
The improper discharge of industrial wastewater causes severe environmental pollution and the textile industry’s dye usage contributes significantly to industrial wastewater pollution. Hence, an effective method for removing the harmful substance methylene blue (MB) from dye wastewater is proposed. This method adopts a three-dimensional graphene composite material based on manganese dioxide (MnO2), named polyurethane@ reduced graphene oxide@ MnO2 (PU@RGO@MnO2). First, graphene is prepared with hydrazine hydrate as a reducing agent and polyurethane as a framework. MnO2 nanoparticles are synthesized by the reaction of potassium permanganate (KMnO4) with carbon. These nanoparticles are then loaded onto the three-dimensional framework to create the composite material. Finally, adsorption and removal experiments for MB are conducted to compare the performance of the composite material. The results indicate that the graphene based on the polyurethane framework exhibits favorable mechanical p... [more]
Integrated and Hybrid Processes for the Treatment of Actual Wastewaters Containing Micropollutants: A Review on Recent Advances
Mina Asheghmoalla, Mehrab Mehrvar
June 7, 2024 (v1)
Subject: Environment
Keywords: Adsorption, advanced oxidation process, advanced treatment methods, integrated treatment technologies, membrane bioreactor, micropollutant removal, wastewater treatment
The global concern regarding the release of micropollutants (MPs) into the environment has grown significantly. Considerable amounts of persistent micropollutants are present in industrial discharges. Depending solely on a singular treatment approach is inadequate for the effective removal of MPs from wastewater due to their complex composition. The performance of different treatment methods to meet the discharge standards has been widely studied. These efforts are classified as hybrid and sequential processes. Despite their adequate performance, the optimization and industrial application of these methods could be challenging and costly. This review focuses on integrated (sequential) and hybrid processes for MP removal from actual wastewater. Furthermore, to provide a thorough grasp of the treatment approaches, the operational conditions, the source of wastewater containing MPs, and its characteristics are detailed. It is concluded that the optimal sequence to achieve the removal of M... [more]
Adsorption and Desorption Behavior of Partially Hydrolyzed Polyacrylamide on Longmaxi Shale
Jun Li, Taotao Luo, Tingting Cheng, Ying Lei, Yameng Xing, Bin Pan, Xiao Fu
June 7, 2024 (v1)
Keywords: Adsorption, desorption, model, partially hydrolyzed polyacrylamide, shale
Large-scale volumetric fracturing is generally used during shale gas development. The return rate of fracturing fluid is low, and a large amount of slickwater is retained in the reservoir. The adsorption and desorption of partially hydrolyzed polyacrylamide (HPAM), an additive commonly used in slickwater, on the surface of shale was studied using Longmaxi shale from the Sichuan Basin. The experimental results showed that the mass ratio of the HPAM solution to shale reached saturation adsorption at 20:1 when the concentration of HPAM solution was 1000 mg/L and 25:1 when the concentration of HPAM solution was 500 mg/L. The mass ratio of the HPAM solution to shale was fixed at 25:1, and the adsorption equilibrium was reached at a HPAM concentration of 1000 mg/L when the aqueous solution temperature was 30 °C and 800 mg/L when the aqueous solution temperature was 60 °C. The Langmuir adsorption model yielded a better fit than the Freundlich adsorption model. The adsorption equilibrium time... [more]
Synthesis of Activated Biochar from the Bark of Moringa oleifera for Adsorption of the Drug Metronidazole Present in Aqueous Medium
Caio Henrique da Silva, Thiago Peixoto de Araújo, Alexandre Teixeira de Souza, Mara Heloisa Neves Olsen Scaliante, Wardleison Martins Moreira
June 7, 2024 (v1)
Subject: Materials
Keywords: activated biochar, Adsorption, drug, Moringa oleifera
seeds, in particular, have been used for water and wastewater treatment due to their ability to remove many pollutants. Therefore, the present work aims to produce bioadsorbent materials by pyrolysis using biomass from the seed shell of Moringa oleifera to remove the drug Metronidazole present in an aqueous medium. The biochars produced were activated with phosphoric acid (H3PO4) and potassium hydroxide (KOH) to compare the material’s modifications and adsorption mechanisms with the biochar in nature (BCM). The biochars were characterized by Point-of-zero charges (pHpzc), Scanning Electron Microscopy (SEM), X-ray Diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The studies showed that the adsorption behavior varied with the pH of the solution. The adsorption study verified that the activated biochars presented better results, so in the kinetic study, the adsorption behavior occurred rapidly in the initial minutes until stabilizing within 3−4... [more]
Preparation of PVA/SA-FMB Microspheres and Their Adsorption of Cr(VI) in Aqueous Solution
Jinlong Zuo, Jin Ren, Liming Jiang, Chong Tan, Junsheng Li, Zhi Xia, Wei Wang
June 6, 2024 (v1)
Subject: Materials
Keywords: Adsorption, biochar, Cr(VI), sodium alginate microspheres
Biochar, a carbon-dense material known for its substantial specific surface area, remarkable porosity, diversity of functional groups, and cost-effective production, has garnered widespread acclaim as a premier adsorbent for the elimination of heavy metal ions and organic contaminants. Nevertheless, the application of powdered biochar is hindered by the challenges associated with its separation from aqueous solutions, and without appropriate management, it risks becoming hazardous waste. To facilitate its use as an immobilization medium, biochar necessitates modification. In this investigation, sodium alginate, celebrated for its superior gelation capabilities, was amalgamated with polyvinyl alcohol to bolster mechanical robustness, thereby embedding biochar to formulate sodium alginate biochar microspheres (PVA/SA-FMB). A meticulously designed response surface methodology experiment was employed to ascertain the optimal synthesis conditions for PVA/SA-FMB. Characterization outcomes un... [more]
A Study on the Adsorption of Methylene Blue by Acid-Modified Coal Measures Kaolin
Xiaoling Ren, Xinqian Shu, Weiguo Geng, Peng Li, Yane Xu
June 5, 2024 (v1)
Keywords: Adsorption, coal measure kaolin, dynamics, methylene blue
In this paper, coal measure kaolin after flotation decarburization was made into an adsorbent by ball milling and acid modification to absorb methylene blue in water, achieving the treatment of waste with waste. The objective of this paper is to expand the application of coal measure kaolin, reduce its stock, and lower the raw material cost of adsorbents while treating wastewater containing methylene blue. The optimum milling time, acid boiling conditions, and adsorption conditions were investigated. Furthermore, the adsorption mechanism was investigated by kinetic calculation. The results show that the optimum milling time is 7 h. Relatively good acid modification conditions include a boiling temperature of 100 °C, a stirring time of 135 min, a stirring speed of 1000 r·min−1, and a concentration of hydrochloric acid of 8 mol·L−1. When 0.05 g of flotation kaolin adsorbent was used to adsorb the solution with pH 12 and a methylene blue concentration of 100 mg·L−1, the optimal adsorption... [more]
Optimized Bentonite Clay Adsorbents for Methylene Blue Removal
Hamad Noori Hamad, Syazwani Idrus, Badronnisa Yusuf, Nur Syakina Jamali, Amimul Ahsan, Sri Suhartini, Abdul Malek Abdul Wahab
June 5, 2024 (v1)
Subject: Materials
Keywords: Adsorption, bentonite clay, cationic dyes, drinking water, isotherm, low-cost adsorbents, methylene blue removal
This study addresses the urgent need for effective water treatment methods by synthesizing and characterizing activated bentonite clay (ABC) adsorbents to remove methylene blue (MB) from aqueous solutions efficiently. Conventional adsorbents often exhibit limitations in efficiency and regeneration capabilities, necessitating novel approaches to water treatment. The primary objective is synthesizing and characterizing high-quality ABC adsorbents capable of effectively removing MB. The activation process was optimized, and adsorbent performance was evaluated regarding MB removal efficiency and regeneration potential. Various activation dos-ages were investigated, and comprehensive physicochemical characterization was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), BET (Brunauer−Emmett−Teller) analysis, X-ray fluorescence (XRF), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The synthesized adsorbents demonstrated excepti... [more]
Performance of Mg/Al and Zn/Al Hydroxide Double Lamellar-Bentonite for Removal of Anionic Azo Dye from Aqueous Solution
Mohammed Mustapha Bouhent, Kahina Bentaleb, Abdulrahman Al-Ameri, Ulrich Maschke
June 5, 2024 (v1)
Subject: Environment
Keywords: Adsorption, azoic orange II dye, bentonite, layered double hydroxides, wastewater treatment
This paper presents the preparation and characterization of bentonite coated with hydroxide double lamellar Mg/Al-bentonite and Zn/Al-bentonite as a potential adsorbent material. The coating process involved co-precipitation of mixed metal nitrate solution (Mg-Al) or (Zn-Al), followed by immersion of bentonite (B-Na+) dispersion. The structures and morphologies of the coated bentonites were characterized using XRD, FTIR, BET, and SEM analysis. The results of the BET analysis indicate that Mg/Al-bentonite and Zn/Al-bentonite have larger surface areas and pore volumes compared to bentonite alone. Specifically, the surface area of Mg/Al-bentonite is 209.25 m2/g with a pore volume of 0.423 cm3/g, while Zn/Al-bentonite has a surface area of 175.95 m2/g and a pore volume of 0.313 cm3/g. In contrast, the surface area and pore volume of bentonite alone are 110.43 m2/g and 0.132 cm3/g, respectively. The Mg/Al-bentonite reaches 85% uptake within 3 h (equivalent to 724.20 mg/g at 25 °C and pH 7),... [more]
Adsorbent Biomaterials Based on Natural Clays and Orange Peel Waste for the Removal of Anionic Dyes from Water
Sonia Mihai, Andreea Bondarev, Cătalina Călin, Elena-Emilia Sȋrbu
June 5, 2024 (v1)
Subject: Materials
Keywords: Adsorption, adsorption kinetics, dye removal, equilibrium isotherm, natural clay, orange peel, thermodynamics
This study demonstrates the efficient removal of Alizarin Yellow R anionic dye (AY) from aqueous solutions using green adsorbents. Natural kaolin clay (A1), acid-modified natural clay (A2), chemically treated orange peel (C1) and biochar produced by the thermal treatment of orange peel (C2) were tested for the adsorption of AY. The characteristics of the sorbents were determined by instrumental methods: SEM, EDS, FTIR, BET and TGA. The adsorption experiments were performed under different conditions, including the initial AY dye concentration, adsorbent weight, pH, temperature and contact time. The maximum adsorption capacities had values between 15.72 and 74.62 mg/g at 298 K and the optimal pH of 6.5 at initial concentrations ranging from 30 to 70 mg/L for all adsorbents. The equilibrium data were used for the adsorption isotherm models: Freundlich, Langmuir and Temkin. The Freundlich model fit best for the adsorbents A2, C1 and C2, and the Langmuir isotherm had the highest regression... [more]
The Gaseous Hydrogen Transport Capacity in Nanopores Coupling Bulk Flow Mechanisms and Surface Diffusion: Integration of Profession and Innovation
Yanglu Wan, Wei Lu, Zhouman Huang, Rucang Qian, Zheng Sun
June 5, 2024 (v1)
Keywords: Adsorption, flow capacity, Hydrogen, nanopores, surface diffusion
Due to its unique chemical structure, hydrogen energy inherently has a high calorific value without reinforcing global warming, so it is expected to be a promising alternative energy source in the future. In this work, we focus on nanoconfined hydrogen flow performance, a critical issue in terms of geological hydrogen storage. For nanopores where the pore scale is comparable to hydrogen’s molecular size, the impact on hydrogen molecules exerted by the pore surface cannot be neglected, leading to the molecules near the surface gaining mobility and slipping on the surface. Furthermore, hydrogen adsorption takes place in the nanopores, and the way the adsorption molecules move is completely different from the bulk molecules. Hence, the frequently applied Navier−Stokes equation, based on the no-slip boundary condition and overlooking the contribution of the adsorption molecules, fails to precisely predict the hydrogen flow capacity in nanopores. In this paper, hydrogen molecules are classi... [more]
The Application of Sheep Wool in the Building Industry and in the Removal of Pollutants from the Environment
Mária Porubská, Karin Koóšová, Jana Braniša
June 5, 2024 (v1)
Subject: Environment
Keywords: Adsorption, construction, isolation, pollutant, sheep wool
The presented review is focused on a brief overview of the scientific works on the use of sheep wool outside the textile industry that were published in recent years. The focus of the information is the on construction industry, which is a significant consumer of heat- and sound-insulating materials. With its properties, sheep wool can compete very well with insulators made from non-renewable resources. Other building elements can also be combined with wool, as long as they are used in appropriate conditions. Due to its chemical and physical structure, wool is extremely suitable for the adsorption removal of pollutants from the living and working environment, in native or modified form. Wool can also be used in recycling processes. However, each application must be preceded by an investigation of the optimal conditions of the given process, which offers researchers inspiration and interesting topics for research.
A Study of the Feasibility of Pinus patula Biochar: The Regeneration of the Indigo Carmine-Loaded Biochar and Its Efficiency for Real Textile Wastewater Treatment
Carolina Gallego-Ramírez, Edwin Chica, Ainhoa Rubio-Clemente
June 5, 2024 (v1)
Subject: Environment
Keywords: Adsorption, biochar, indigo carmine, regeneration, scalability
The feasibility of an adsorbent material like biochar (BC) depends on its regeneration capacity and its ability to achieve high removal efficiencies on real wastewater (WW) effluents. In this study, the regeneration capacity of the Pinus patula BC previously used in the removal of Indigo Carmine from water was evaluated. The regeneration technique that resulted in the highest desorption efficiency was a thermo-chemical method that consisted of heating the spent BC in a stove at 160 °C for 45 min followed by regeneration with ethanol (C2H6O) at a concentration of 75% for 6 h. Through this regeneration method, it was found that Pinus patula BC could be used in seven consecutive adsorption−desorption cycles. The feasibility of this BC was also assessed by evaluating the adsorbent’s efficiency in real textile WW. Under optimal operational conditions (solution pH = 3, BC dose = 13.5 g/L, and BC particle size = 300−450 µm), the highest removal efficiencies in terms of colour and dissolved or... [more]
Innovative Plant-Derived Biomaterials for Sustainable and Effective Removal of Cationic and Anionic Dyes: Kinetic and Thermodynamic Study
El Mokhtar Saoudi Hassani, Dounia Azzouni, Mohammed M. Alanazi, Imane Mehdaoui, Rachid Mahmoud, Atul Kabra, Abdeslam Taleb, Mustapha Taleb, Zakia Rais
June 5, 2024 (v1)
Subject: Materials
Keywords: Adsorption, Aleppo pine fiber, anionic dye, cationic dye, kinetics, thermodynamic parameters
The aim of this study is to purify industrial textile effluents by treating two types of commonly encountered dyes: blue maxilon (BM), of cationic nature, and black eriochrome (NE), of anionic nature. We intend to employ an innovative approach based on the adsorption of these dyes onto a novel vegetal biomaterial derived from Aleppo pine fibers (FPAs). A kinetic and thermodynamic study was conducted. The effect of some physicochemical parameters on both dye adsorption and FPAs was also evaluated. The modeling of the adsorption results was performed using Langmuir, Freundlich, Temkin, and Dubinin Radushkevich (D-R) isotherms. The results indicate that the equilibrium time strongly depends on the initial concentration of the two dyes, being 60 min with pseudo-second-order adsorption kinetics for both dyes. Adsorption isotherms under the optimal conditions of adsorbent mass, temperature, medium pH, and dye concentration were used to determine the maximum adsorption efficiency, which was c... [more]
Showing records 1 to 25 of 240. [First] Page: 1 2 3 4 5 Last
[Show All Keywords]