Browse
Keywords
Records with Keyword: Life Cycle Analysis
Showing records 1 to 25 of 44. [First] Page: 1 2 Last
Designing Reverse Electrodialysis Process for Salinity Gradient Power Generation via Disjunctive Programming
Carolina Tristán, Marcos Fallanza, Raquel Ibáñez, Ignacio E. Grossmann, David Bernal Neira
August 16, 2024 (v2)
Keywords: Life Cycle Analysis, Modelling and Simulations, Optimization, Process Design, Pyomo, Renewable and Sustainable Energy
Reverse electrodialysis (RED) is a nascent renewable technology that generates clean, baseload electricity from salinity differences between two water streams, a renewable source known as salinity gradient energy (SGE). Full-scale RED progress calls for robust techno-economic and environmental assessments. Using generalized disjunctive programming (GDP) and life cycle assessment (LCA) principles, this work proposes cost-optimal and sustainable RED process designs involving different RED stack sizes and width-over-length ratios to guide the design and operation from the demonstration to full-scale phases. Results indicate that RED units will benefit from larger aspect ratios with a relative increase in net power of over 30% with 6 m2 membrane size. Commercial RED unit sizes (0.25–3 m2) require larger aspect ratios to reach an equal relative increase in net power but exhibit higher power densities. The GDP model devises profitable RED process designs for all the assessed aspect ratios in... [more]
Sustainable Process Systems Engineering - You're Doing It Wrong!
Raymond L. Smith
August 16, 2024 (v2)
Most studies in process systems engineering are applying incomplete methods when incorporating sustainability. Including sustainability is a laudable goal, and practitioners are encouraged to develop systems that promote economic, environmental, and social aspects. Ten methods that are often overlooked in performing sustainable process systems engineering are listed in this effort and discussed in detail. Practitioners are encouraged to create designs that are inherently safer, to be more complete in their identification of process chemicals used and released, to be complete in their definitions of supply chains, and to apply additional environmental impact categories. Other methods point to items that are factors in process systems engineering such as disruptive recycling, robust superstructures for optimizations, and employing complete sets of objectives. Finally, users should be aware that sustainability tools are available, which might have been outside of their awareness.
Optimal Design of Food Packaging Considering Waste Management Technologies to Achieve Circular Economy
Paola A. Munoz-Briones, Aurora del C. Munguía-López, Kevin L. Sánchez-Rivera, Victor M. Zavala, George W. Huber, Styliani Avraamidou
August 16, 2024 (v2)
Subject: Environment
Plastic packaging plays a fundamental role in the food industry, avoiding food waste and facilitating food access. The increasing plastic production and the lack of appropriate plastic waste management technologies represent a threat to the environmental and human welfare. Therefore, there is an urgent need to identify sustainable packaging solutions. Circular economy (CE) promotes reducing waste and increasing recycling practices to achieve sustainability. In this work, we propose a CE framework based on multi-objective optimization, considering both economic and environmental impacts, to identify optimal packaging designs and waste management technologies. Using mixed-integer linear programming (MILP), techno-economic analysis (TEA), and life cycle assessment (LCA), this work aims to build the first steps in packaging design, informing about the best packaging alternatives and the optimal technology or technologies to process packaging waste. For the economic analysis, we consider th... [more]
A Fast Computational Framework for the Design of Solvent-Based Plastic Recycling Processes
Aurora del C. Munguía-López, Panzheng Zhou, Ugochukwu M. Ikegwu, Reid C. Van Lehn, Victor M. Zavala
August 16, 2024 (v2)
Keywords: Life Cycle Analysis, Modelling and Simulations, Polymers, Process Design, Technoeconomic Analysis
Multilayer plastic films are widely used in packaging applications because of their unique properties. These materials combine several layers of different polymers to protect food and pharmaceuticals from external factors such as oxygen, water, temperature, and light. Unfortunately, this design complexity also hinders the use of traditional recycling methods, such as mechanical recycling. Solvent-based separation processes are a promising alternative to recover high-quality pure polymers from multilayer film waste. One such process is the Solvent-Targeted Recovery and Precipitation (STRAPTM) process, which uses sequential solvent washes to selectively dissolve and separate the constituent components of multilayer films. The STRAPTM process design (separation sequence, solvents, operating conditions) changes significantly depending on the design of the multilayer film (the number of layers and types of polymers). Quantifying the economic and environmental benefits of alternative process... [more]
Resource Integration Across Processing Clusters: Designing a Cluster of Clusters
Mohammad Lameh, Dhabia Al-Mohannadi, Patrick Linke
August 16, 2024 (v2)
Subject: Environment
Achieving worldwide sustainable development is a practical challenge that demands an efficient management of resources across their entire value chains. This practical task requires the optimal selection of pathways for extracting, processing, and transporting resources to meet the demands in different geographic regions at minimal economic cost and environmental impact. This work addresses the challenge by proposing a systematic framework for designing resource-processing networks that can be applied to resource management problems. The framework considers the integration and resource exchange within and across multiple processing clusters. It allows for the life cycle assessment of the environmental and economic impacts of the defined value chains, and design accordingly the different processing and transport systems from extraction to final use. The proposed representation and optimization model are demonstrated in a case study to assess the impact of energy transition under decarbo... [more]
Screening Green Solvents for Multilayer Plastic Films Separation
Ugochukwu M. Ikegwu, Victor M. Zavala, Reid C. Van Lehn
August 16, 2024 (v2)
Keywords: COSMO-RS, Green Solvents, Life Cycle Analysis, Plastics Recycling, Polymer, Process Design, Technoeconomic Analysis
This paper introduces a computational framework for selecting green solvents to separate multilayer plastic films, particularly those challenging to recycle through mechanical means. The framework prioritizes the selective dissolution of polymers while considering solvent toxicity. Initial screening relies on temperature-solubility dependence, utilizing octanol-water partition coefficients (LogP) to identify non-toxic solvents (LogP = 3). Additionally, guidelines from GlaxoSmithKline (GSK), Registration, Evaluation, Authorization, and Restriction of Chemical Regulation (REACH), and the US Environmental Protection Agency (EPA) are employed to screen for green solvents. Molecular-scale models predict temperature-dependent solubilities and LogP values for polymers and solvents. The framework is applied to identify green solvents for separating a multilayer plastic film composed of polyethylene (PE), ethylene vinyl alcohol (EVOH), and polyethylene terephthalate (PET). The case study demons... [more]
Integrated Ex-Ante Life Cycle Assessment and Techno-Economic Analysis of Biomass Conversion Technologies Featuring Evolving Environmental Policies
Dat T. Huynh, Marianthi Ierapetritou
August 16, 2024 (v2)
Biorefineries can reduce carbon dioxide emissions while serving the global chemical demand market. Governments are also using carbon pricing policies, such as carbon taxes, cap-and-trade models, and carbon caps, as a strategy to reduce emissions. The use of biomass feedstocks in conjunction with carbon capture usage and storage technologies are mitigation strategies for global warming. Businesses can invest in these technologies to accommodate the adoption of these policies. Rapid action is necessary to halt global warming, which results in aggressive policies. In this work, a multi-period process design and planning problem is developed for the design and capacity expansion of biorefineries. The three carbon pricing policies are integrated into the model and parameters are selected according to the aggressive scenario denoted by the Paris Agreement. The results show that the cap-and-trade policy achieves a higher net present value evaluation over the carbon tax model across all pareto... [more]
Sustainable Production of Fertilizers via Photosynthetic Recovery of Nutrients in Livestock Waste
Leonardo D. González, Celeste Mills, Aurora del C. Munguía-López, Victor M. Zavala
August 16, 2024 (v2)
Keywords: Life Cycle Analysis, Process Design, Technoeconomic Analysis
Increases in population and improvements in living standards have significantly increased the demand for animal products worldwide. However, modern livestock agriculture exerts significant pressure on the environment due to high material and energy requirements. These systems also generate significant amounts of waste that can cause severe environmental damage when not handled properly. Thus, if we wish to enable farmers to meet this increased demand in a sustainable way, technology pathways must be developed to convert livestock agriculture into a more circular economy. With this end in mind, we propose a novel framework (which we call ReNuAl) for the recovery of nutrients from livestock waste. ReNuAl integrates existing technologies with a novel biotechnology approach that uses cyanobacteria (CB) as a multi-functional component for nutrient capture and balancing, purifying biogas, and capturing carbon. The CB can be applied to crops, reducing the need for synthetic fertilizers like d... [more]
Environmental Impact of Simulated Moving Bed (SMB) on the Recovery of 2,3-Butanediol on an Integrated Biorefinery
Marco E. Avendano, Jianpei Lao, Qiang Fu, Sankar Nair, Matthew J. Realff
August 16, 2024 (v2)
Subject: Environment
2,3 butanediol (BDO) has garnered recent interest due to the high titer concentrations that can be obtained through biochemical routes and its potential for efficient conversion into long-chain hydrocarbons. BDO separation, however, is challenging given its low volatility and high affinity towards water. In this study, two BDO separation pathways were compared, single distillation and combined simulated moving bed (SMB) adsorption with distillation. The separations were incorporated into a 2018 biorefinery design developed by the National Renewable Energy Laboratory (NREL) to produce renewable fuels from corn stover, with BDO as an intermediate and adipic acid as the co-product. The comparison was performed on the basis of sustainability, using lifecycle greenhouse gas (GHG) emissions as the metric. It was found that using a single distillation column gives GHG emissions of 48 gCO2e/MJ for the renewable fuel. This is lower than 93 gCO2e/MJ for petroleum fuel but is higher compared to t... [more]
Machine Learning Methods for the Forecasting of Environmental Impacts in Early-stage Process Design
Emmanuel A. Aboagye, Austin L. Lehr, Ethan Shumaker, Jared Longo, John Pazik, Robert P. Hesketh, Kirti M. Yenkie
August 16, 2024 (v2)
Initial design stages are inherently complex and often lack comprehensive information, posing challenges in evaluating sustainability metrics. Machine Learning (ML) emerges as a valuable solution to address these challenges. ML algorithms, particularly effective in predicting environmental impacts of new chemicals with limited data, enable more informed decisions in sustainable design. This study focuses on employing ML for predicting the environmental impacts related to human health, ecosystem quality, climate change, and resource utilization to aid in early-stage environmental impact assessment of chemical processes. The effectiveness of the ML algorithm, eXtreme Gradient Boosting (XGBoost) tested using a dataset of 350 points, divided into training, testing, and validation sets. The study also includes a practical application of the model in a cradle-to-cradle LCA of N-Methylpyrrolidone (NMP), demonstrating its utility in sustainable chemical process design. This approach signifies... [more]
Life Cycle and Sustainability Analyses for Designing Chemical Circular Economy
David Perez, John D. Chea, Jose D. Hernandez-Betancur, Gerardo J. Ruiz-Mercado
August 15, 2024 (v2)
Subject: Environment
Sustainability and circular economy enclose initiatives to achieve economic systems and industrial value chains by improving resource use, productivity, reuse, recycling, pollution prevention, and minimizing disposed material. However, shifting from the traditional linear economic production system to a circular economy is challenging. One of the most significant hurdles is the absence of sustainable end-of-life (EoL)/manufacturing loops for recycling and recovering material while minimizing negative impacts on human health and the environment. Overcoming these challenges is critical in returning materials to upstream life cycle stage facilities such as manufacturing. Chemical flow analysis (CFA), sustainability evaluation, and process systems engineering (PSE) can supply chemical products and processes performances from environmental, economic, material efficiency, energy footprint, and technology perspectives. These holistic evaluation techniques can improve productivity, source mate... [more]
Designing Process Systems for Net-Zero Emissions and Nature- and People-Positive Decisions
Bhavik R. Bakshi
August 15, 2024 (v2)
Keywords: Ecosystem services, Environment, Interdisciplinary, Life Cycle Analysis, Net-zero, Process Design, Process Synthesis, Social equity
Sustainability of the chemical and materials industry (CMI) requires it to achieve net-zero emis-sions of greenhouse gases and other resources while making decisions that have a net-positive impact on nature and society. Many corporations, nations, and universities have pledged to meet such goals but systematic models, methods, and tools to guide this transition are missing. We pre-sent a framework to meet this need. It involves developing a comprehensive, open access model of the global CMI. In addition to existing technologies, this model includes emerging alternatives for renewable energy, circularization, and carbon capture, utilization and storage. Systematic methods help identify innovation opportunities and develop roadmaps that account for long-term changes such as technology evolution and climate change. Meeting the goal of net-zero emis-sions requires inclusion of life cycle impacts. Nature-positive decisions need to encourage eco-logical protection and restoration. Thi... [more]
Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle
Edwin Espinel Blanco, Guillermo Valencia Ochoa, Jorge Duarte Forero
April 25, 2023 (v1)
Subject: Environment
Keywords: Brayton, environmental impact, Exergy, Life Cycle Analysis, ORC, performance parameters
In this article, a thermodynamic, exergy, and environmental impact assessment was carried out on a Brayton S-CO2 cycle coupled with an organic Rankine cycle (ORC) as a bottoming cycle to evaluate performance parameters and potential environmental impacts of the combined system. The performance variables studied were the net power, thermal and exergetic efficiency, and the brake-specific fuel consumption (BSFC) as a function of the variation in turbine inlet temperature (TIT) and high pressure (PHIGH), which are relevant operation parameters from the Brayton S-CO2 cycle. The results showed that the main turbine (T1) and secondary turbine (T2) of the Brayton S-CO2 cycle presented higher exergetic efficiencies (97%), and a better thermal and exergetic behavior compared to the other components of the System. Concerning exergy destruction, it was found that the heat exchangers of the system presented the highest exergy destruction as a consequence of the large mean temperature difference be... [more]
Life Cycle Assessment on Different Synthetic Routes of ZIF-8 Nanomaterials
Vasileios Ntouros, Ioannis Kousis, Dimitra Papadaki, Anna Laura Pisello, Margarita Niki Assimakopoulos
April 24, 2023 (v1)
Subject: Materials
Keywords: environmental impact assessment, Life Cycle Analysis, metal organic frameworks, nanomaterials, synthesis procedure, ZIF-8
In the last twenty years, research activity around the environmental applications of metal−organic frameworks has bloomed due to their CO2 capture ability, tunable properties, porosity, and well-defined crystalline structure. Thus, hundreds of MOFs have been developed. However, the impact of their production on the environment has not been investigated as thoroughly as their potential applications. In this work, the environmental performance of various synthetic routes of MOF nanoparticles, in particular ZIF-8, is assessed through a life cycle assessment. For this purpose, five representative synthesis routes were considered, and synthesis data were obtained based on available literature. The synthesis included different solvents (de-ionized water, methanol, dimethylformamide) as well as different synthetic steps (i.e., hours of drying, stirring, precursor). The findings revealed that the main environmental weak points identified during production were: (a) the use of dimethylformamide... [more]
Health Cost Estimation of Traffic-Related Air Pollution and Assessing the Pollution Reduction Potential of Zero-Emission Vehicles in Toronto, Canada
Hamidreza Shamsi, Mohammad Munshed, Manh-Kien Tran, Youngwoo Lee, Sean Walker, Jesse The, Kaamran Raahemifar, Michael Fowler
April 24, 2023 (v1)
Subject: Environment
Keywords: air pollution cost analysis, air pollution modeling, health cost analysis, Life Cycle Analysis, zero-emission vehicles
Fossil fuel vehicles, emitting air toxics into the atmosphere, impose a heavy burden on the economy through additional health care expenses and ecological degradation. Air pollution is responsible for millions of deaths and chronic and acute health problems every year, such as asthma and chronic obstructive pulmonary disease. The fossil-fuel-based transportation system releases tons of toxic gases into the atmosphere putting human health at risk, especially in urban areas. This analysis aims to determine the economic burden of environmental and health impacts caused by Highway 401 traffic. Due to the high volume of vehicles driving on the Toronto Highway 401 corridor, there is an annual release of 3771 tonnes of carbon dioxide equivalent (CO2e). These emissions are mainly emitted onsite through the combustion of gasoline and diesel fuel. The integration of electric and hydrogen vehicles shows maximum reductions of 405−476 g CO2e per vehicle-kilometer. Besides these carbon dioxide emiss... [more]
Comparative Life Cycle Assessment of Propulsion Systems for Heavy-Duty Transport Applications
Sam Simons, Ulugbek Azimov
April 20, 2023 (v1)
Subject: Environment
Keywords: climate change, fuel cell, global warming potential, greenhouse gas emissions, heavy-duty transport, Hydrogen, Life Cycle Analysis
To meet climate change challenges, the UK government is aiming to reach zero emissions by 2050. The heavy-duty transportation sector contributes 17% to the UKs total emissions, so to combat this, alternative power units to traditional fossil fuel-reliant internal combustion engines (ICEs) are being utilized and investigated. Hydrogen fuel cells are a key area of interest to try and reduce these transportation emissions. To gain a true view of the impact that hydrogen fuel cells can have, this study looks at the impact the manufacturing of a fuel cell has upon the environment, from material extraction through to the usage phase. This was done through the use of a lifecycle assessment following ISO 14040 standards, with hydrogen systems being compared to alternative systems. This study has found that whilst fuel cells depend upon energy intensive materials for their construction, it is possible to reduce emissions by 34−87% compared to ICE systems, depending upon the source of hydrogen u... [more]
Cost and Environmental Benefits of Using Pelleted Corn Stover for Bioethanol Production
Ramsharan Pandey, Nurun Nahar, Scott W. Pryor, Ghasideh Pourhashem
April 19, 2023 (v1)
Subject: Environment
Keywords: biomass pellets, cellulosic biorefinery, Life Cycle Analysis, soaking in aqueous ammonia pretreatment, Technoeconomic Analysis
While the production costs and logistical benefits of biomass pelleting have been widely discussed in the literature, the downstream economic and environmental benefits of processing pelleted biomass have been largely neglected. To investigate those benefits, we performed a comparative techno-economic analysis and life cycle assessment of producing ethanol using loose and pelleted forms of biomass. Analyses of a 2000 metric tons (dry)/d biorefinery showed that using pelleted biomass is more economical than using loose or baled biomass. The lowest minimum ethanol selling price (MESP) for pelleted biomass was USD 0.58/gal less than the lowest MESP for loose biomass. Among all processing conditions analyzed, MESP for ethanol produced with pelleted biomass was always lower than when produced with loose biomass. Shorter pretreatment and hydrolysis times, higher pretreatment solids loadings, lower ammonia requirements, and reduced enzyme loadings were the primary factors contributing to lowe... [more]
Life Cycle Perspectives of Using Non-Pelleted vs. Pelleted Corn Stover in a Cellulosic Biorefinery
Nurun Nahar, Ramsharan Pandey, Ghasideh Pourhashem, David Ripplinger, Scott W. Pryor
April 19, 2023 (v1)
Subject: Environment
Keywords: biorefinery, cellulosic biomass, corn stover, densification, greenhouse gas (GHG), Life Cycle Analysis, pelleting, soaking in aqueous ammonia pretreatment, solid loadings
Cellulosic biorefineries have attracted interest due to the growing energy security and environmental concerns related to fossil fuel-based energy and chemicals. Using pelleted biomass as a biorefinery feedstock can reduce their processing inputs while improving biomass handling and transportation. However, it is still questionable whether energy and emission savings from feedstock transportation and processing can justify pelletization. A life cycle assessment approach was used to compare energy consumption and greenhouse gas (GHG) emissions from pelleted and non-pelleted corn stover as a biorefinery feedstock. Operations considered were pelleting, transportation, and soaking in aqueous ammonia (SAA) pretreatment. Despite greater GHG emissions (up to 25 times higher than the transportation) generated from the pelleting process, the model showed a significant opportunity to offset and even reduce overall GHG emissions considering the pretreatment process benefits. Our process energy an... [more]
A Gate-to-Gate Life Cycle Assessment for the CO2-EOR Operations at Farnsworth Unit (FWU)
Anthony Morgan, Reid Grigg, William Ampomah
April 19, 2023 (v1)
Subject: Environment
Keywords: anthropogenic CO2, carbon storage, CO2-enhanced oil recovery, global warming potential, greenhouse gas (GHG), Life Cycle Analysis
Greenhouse gas (GHG) emissions related to the Farnsworth Unit’s (FWU) carbon dioxide enhanced oil recovery (CO2-EOR) operations were accounted for through a gate-to-gate life cycle assessment (LCA) for a period of about 10 years, since start of injection to 2020, and predictions of 18 additional years of the CO2-EOR operation were made. The CO2 source for the FWU project has been 100% anthropogenically derived from the exhaust of an ethanol plant and a fertilizer plant. A cumulative amount of 5.25 × 106 tonnes of oil has been recovered through the injection of 1.64 × 106 tonnes of purchased CO2, of which 92% was stored during the 10-year period. An LCA analysis conducted on the various unit emissions of the FWU process yielded a net negative (positive storage) of 1.31 × 106 tonnes of CO2 equivalent, representing 79% of purchased CO2. An optimized 18-year forecasted analysis estimated 86% storage of the forecasted 3.21 × 106 tonnes of purchased CO2 with an equivalent 2.90 × 106 tonnes o... [more]
A Multi-Objective Approach toward Optimal Design of Sustainable Integrated Biodiesel/Diesel Supply Chain Based on First- and Second-Generation Feedstock with Solid Waste Use
Evgeniy Ganev, Boyan Ivanov, Natasha Vaklieva-Bancheva, Elisaveta Kirilova, Yunzile Dzhelil
April 19, 2023 (v1)
Subject: Environment
Keywords: 1G and 2G feedstock, economic, environmental and social criteria, GHG emissions, integrated biodiesel/diesel supply chain, Life Cycle Analysis, optimal design, solid waste use
This study proposes a multi-objective approach for the optimal design of a sustainable Integrated Biodiesel/Diesel Supply Chain (IBDSC) based on first- (sunflower and rapeseed) and second-generation (waste cooking oil and animal fat) feedstocks with solid waste use. It includes mixed-integer linear programming (MILP) models of the economic, environmental and social impact of IBDSC, and respective criteria defined in terms of costs. The purpose is to obtain the optimal number, sizes and locations of bio-refineries and solid waste plants; the areas and amounts of feedstocks needed for biodiesel production; and the transportation mode. The approach is applied on a real case study in which the territory of Bulgaria with its 27 districts is considered. Optimization problems are formulated for a 5-year period using either environmental or economic criteria and the remainder are defined as constraints. The obtained results show that in the case of the economic criterion, 14% of the agricultur... [more]
Advances in Energy Hybridization for Resilient Supply: A Sustainable Approach to the Growing World Demand
Haider Al-Rubaye, Joseph D. Smith, Mohammed H. S. Zangana, Prashant Nagapurkar, Yishu Zhou, Greg Gelles
March 28, 2023 (v1)
Subject: Environment
Keywords: hybrid energy system, Life Cycle Analysis, Renewable and Sustainable Energy, resilience
Energy poverty, defined as a lack of access to reliable electricity and reliance on traditional biomass resources for cooking, affects over a billion people daily. The World Health Organization estimates that household air pollution from inefficient stoves causes more premature deaths than malaria, tuberculosis, and HIV/AIDS. Increasing demand for energy has led to dramatic increases in emissions. The need for reliable electricity and limiting emissions drives research on Resilient Hybrid Energy Systems (RHESs), which provide cleaner energy through combining wind, solar, and biomass energy with traditional fossil energy, increasing production efficiency and reliability and reducing generating costs and emissions. Microgrids have been shown as an efficient means of implementing RHESs, with some focused mainly on reducing the environmental impact of electric power generation. The technical challenges of designing, implementing, and applying microgrids involve conducting a cradle-to-grave... [more]
Comparative Life Cycle Assessment of Merging Recycling Methods for Spent Lithium Ion Batteries
Zhiwen Zhou, Yiming Lai, Qin Peng, Jun Li
March 9, 2023 (v1)
Subject: Environment
Keywords: energy consumption, greenhouse gas emission, hydrometallurgical method, in-situ roasting reduction, Life Cycle Analysis, pyrometallurgical method, recycling, spent lithium-ion batteries
An urgent demand for recycling spent lithium-ion batteries (LIBs) is expected in the forthcoming years due to the rapid growth of electrical vehicles (EV). To address these issues, various technologies such as the pyrometallurgical and hydrometallurgical method, as well as the newly developed in-situ roasting reduction (in-situ RR) method were proposed in recent studies. This article firstly provides a brief review on these emerging approaches. Based on the overview, a life cycle impact of these methods for recovering major component from one functional unit (FU) of 1 t spent EV LIBs was estimated. Our results showed that in-situ RR exhibited the lowest energy consumption and greenhouse gas (GHG) emissions of 4833 MJ FU−1 and 1525 kg CO2-eq FU−1, respectively, which only accounts for ~23% and ~64% of those for the hydrometallurgical method with citric acid leaching. The H2O2 production in the regeneration phase mainly contributed the overall impact for in-situ RR. The transportation di... [more]
LCA-Based Regional Distribution and Transference of Carbon Emissions from Wind Farms in China
Xintian Bi, Jin Yang, Siyuan Yang
March 3, 2023 (v1)
Subject: Environment
Keywords: carbon emissions, Life Cycle Analysis, regional transfer, wind power
As a clean form of energy utilization, wind power is important for alleviating climate change. Although no direct carbon emissions occur in wind power generation, there exist upstream carbon emissions from manufacturing and installation, which have indirect effects on both the locations of wind farms and areas involved in upstream production and manufacturing. In this paper, based on Input−Output based Life Cycle Analysis (IO-LCA), we explored the lifetime carbon emissions of 378 wind farms in China that were still in operation in 2015. The regional distributions of carbon emissions from wind farms during the whole lifetime were depicted. The embodied carbon emission transfers from the location of the wind farm operation to upstream turbine manufacturing regions were traced. The net emission reduction benefits among regions were also calculated. Results show that carbon emissions mainly distribute in Liaoning, Inner Mongolia, and Tianjin in the turbine manufacturing stage, with a total... [more]
Review on Ventilation Systems for Building Applications in Terms of Energy Efficiency and Environmental Impact Assessment
Effrosyni Giama
March 3, 2023 (v1)
Subject: Environment
Keywords: Energy Efficiency, environmental impact assessment, Life Cycle Analysis, ventilation systems
Buildings are responsible for approximately 30−40% of energy consumption in Europe, and this is a fact. Along with this fact is also evident the existence of a defined and strict legislation framework regarding energy efficiency, decarbonization, sustainability, and renewable energy systems in building applications. Moreover, information and communication technologies, along with smart metering for efficient monitoring, has come to cooperate with a building’s systems (smart buildings) to aim for more advanced and efficient energy management. Furthermore, the well-being in buildings still remains a crucial issue, especially nowadays that health and air quality are top priority goals for occupants. Taking all the above into consideration, this paper aims to analyze ventilation technologies in relation to energy consumption and environmental impact assessment using the life cycle approach. Based on the review analysis of the existing ventilation technologies, the emphasis is given to para... [more]
A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part One: Wastes and Environmental Impacts
Robin Taylor, William Bodel, Laurence Stamford, Gregg Butler
March 2, 2023 (v1)
Subject: Environment
Keywords: closed fuel cycle, Life Cycle Analysis, nuclear fuel cycle, open fuel cycle, radioactive waste, Renewable and Sustainable Energy, spent nuclear fuel
Globally, around half a million tonnes of spent nuclear fuel (SNF) will be in dry or wet storage by around 2050. Continued storage is not sustainable, and this SNF must eventually either be disposed (the open nuclear fuel cycle) or recycled (the closed fuel cycle). Many international studies have addressed the advantages and disadvantages of these options. To inform this debate, a detailed survey of the available literature related to environmental assessments of closed and open cycles has been undertaken. Environmental impacts are one of the three pillars that, alongside economic and societal impacts, must be considered for sustainable development. The aims are to provide a critical review of the open literature in order to determine what generic conclusions can be drawn from the broad base of international studies. This review covers the results of life cycle assessments and studies on waste arisings, showing how the management of spent fuels in the open and closed cycles impact the... [more]
Showing records 1 to 25 of 44. [First] Page: 1 2 Last
[Show All Keywords]