Browse
Subjects
Records with Subject: Food & Agricultural Processes
Showing records 1 to 25 of 260. [First] Page: 1 2 3 4 5 Last
A Study of Factors Affecting Iron Uptake from a Functionalized Hibiscus Beverage
Ade O Oyewole, Levente L Diosady
October 21, 2021 (v1)
Keywords: Hibiscus sabdariffa, iron bioaccessibility, iron deficiency
Iron deficiency accounts for over 50% of the world’s anaemia burden and it is widely prevalent in low- and middle-income countries. In response to the menace of iron deficiency in Sub-Saharan Africa, a commonly consumed beverage, the vibrantly red aqueous extract of the calyces of Hibiscus sabdariffa, has been functionalized. To determine the conditions that could potentially result in the most iron uptake by consumers of the functional beverage, the present study evaluated the effect of the factors that could influence the bioaccessibility of its iron content in the gastrointestinal (GI) tract.

Hibiscus beverage was fortified to contain, 6 mg iron per 250 mL of the beverage, by adding O.358 mM solution of ferrous sulphate salt to top up the native iron content determined to be 0.93±0.19 mg/ 250 mL. Also, a competing chelating agent - disodium EDTA was added to increase the bioaccessibility of iron from the beverage. Previous results showed the feasibility of releasing iron from th... [more]
Formulation and Stability of Cellulose-Based Delivery Systems of Raspberry Phenolics
Josipa Vukoja, Ivana Buljeta, Anita Pichler, Josip Šimunović, Mirela Kopjar
October 14, 2021 (v1)
Keywords: anthocyanins, antioxidant activity, cellulose/raspberry encapsulates, inhibition of α-amylase, phenolics
Encapsulation of bioactives is a tool to prepare their suitable delivery systems and ensure their stability. For this purpose, cellulose was selected as carrier of raspberry juice phenolics and freeze-dried cellulose/raspberry encapsulates (C/R_Es) were formulated. Influence of cellulose amount (2.5%, 5%, 7.5% and 10%) and time (15 or 60 min) on the complexation of cellulose and raspberry juice was investigated. Obtained C/R_Es were evaluated for total phenolics, anthocyanins, antioxidant activity, inhibition of α-amylase and color. Additionally, encapsulation was confirmed by FTIR. Stability of C/R_Es was examined after 12 months of storage at room temperature. Increasing the amount of cellulose during formulation of C/R_E from 2.5% to 10%, resulted in the decrease of content of total phenolics and anthocyanins. Additionally, encapsulates formulated by 15 min of complexation had a higher amount of investigated compounds. This tendency was retained after storage. The highest antioxidan... [more]
Influence of Processing Parameters on Phenolic Compounds and Color of Cabernet Sauvignon Red Wine Concentrates Obtained by Reverse Osmosis and Nanofiltration
Ivana Ivić, Mirela Kopjar, Lidija Jakobek, Vladimir Jukić, Suzana Korbar, Barbara Marić, Josip Mesić, Anita Pichler
October 14, 2021 (v1)
Keywords: Cabernet Sauvignon concentrate, nanofiltration, phenolic compounds, reverse osmosis
In this study, Cabernet Sauvignon red wine was subjected to reverse osmosis and nanofiltration processes at four different pressures (25, 35, 45, and 55 bar) and two temperature regimes (with and without cooling). The aim was to obtain concentrates with a higher content of phenolic compounds and antioxidant activity and to determine the influence of two membrane types (Alfa Laval RO98pHt M20 for reverse osmosis and NF M20 for nanofiltration) and different operating conditions on phenolics retention. Total polyphenol, flavonoid, monomeric anthocyanin contents, and antioxidant activity were determined spectrophotometrically. Flavan-3-ols and phenolic acids were analyzed on a high-performance liquid chromatography system and sample colour was measured by chromometer. The results showed that the increase in applied pressure and decrease in retentate temperature were favorable for higher phenolics retention. Retention of individual compounds depended on their chemical structure, membrane pr... [more]
State-of-the-Art Char Production with a Focus on Bark Feedstocks: Processes, Design, and Applications
Ali Umut Şen, Helena Pereira
October 14, 2021 (v1)
Keywords: bark, charcoal, gasification, hydrothermal carbonization, pyrolysis, torrefaction
In recent years, there has been a surge of interest in char production from lignocellulosic biomass due to the fact of char’s interesting technological properties. Global char production in 2019 reached 53.6 million tons. Barks are among the most important and understudied lignocellulosic feedstocks that have a large potential for exploitation, given bark global production which is estimated to be as high as 400 million cubic meters per year. Chars can be produced from barks; however, in order to obtain the desired char yields and for simulation of the pyrolysis process, it is important to understand the differences between barks and woods and other lignocellulosic materials in addition to selecting a proper thermochemical method for bark-based char production. In this state-of-the-art review, after analyzing the main char production methods, barks were characterized for their chemical composition and compared with other important lignocellulosic materials. Following these steps, previ... [more]
Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production
Laura Acosta, Dahiana Galeano-Caro, Oscar E. Medina, Farid B. Cortés, Camilo A. Franco
October 14, 2021 (v1)
Keywords: activated carbon, Adsorption, Catalysis, coffee residue, crude oil, magnetite nanoparticles
This work focused on evaluating the adsorptive removal of crude oil using a nano-intermediate based on magnetite nanoparticles supported on activated carbon synthesized from spent coffee grounds and the subsequent catalytic oil decomposition to recover by-products and regenerate the support material. The magnetite nanoparticles were synthesized by the co-precipitation method and were used as active phases on prepared activated carbon. The amount of crude oil adsorbed was determined by adsorption isotherms. In addition, dynamic tests were performed on a packed bed to evaluate the efficiency of the removal process. Thermogravimetric analysis and mass spectrometry were used to evaluate the catalytic powder and the quantification of by-products. Contrasting the results with commercial carbon, the one synthesized from the coffee residue showed a greater affinity for the oil. Likewise, the adsorption capacity increased by doping activated carbon with magnetite nanoparticles, obtaining an eff... [more]
Identification of Penicillium verrucosum, Penicillium commune, and Penicillium crustosum Isolated from Chicken Eggs
Soňa Demjanová, Pavlina Jevinová, Monika Pipová, Ivana Regecová
October 11, 2021 (v1)
Keywords: colony morphology, creatine, egg, Ehrlich reaction, mold, PCR, PCR-ITS-RFLP, Penicillium, restriction enzyme
Penicillium species belong to main causative agents of food spoilage leading to significant economic losses and potential health risk for consumers. These fungi have been isolated from various food matrices, including table eggs. In this study, both conventional Polymerase Chain Reaction (PCR) and Polymerase Chain Reaction-Internal Transcribed Spacer-Restriction Fragment Length Polymorphism (PCR-ITS-RFLP) methods were used for species identification of Penicillium (P.) spp. isolated from the eggshells of moldy chicken eggs. Seven restriction endonucleases (Bsp1286I, XmaI, HaeIII, HinfI, MseI, SfcI, Hpy188I) were applied to create ribosomal restriction patterns of amplified ITS regions. To identify P. verrucosum, P. commune, and P. crustosum with the help of conventional PCR assay, species-specific primer pairs VERF/VERR, COMF/COMR, and CRUF/CRUR were designed on the base of 5.8 subunit-Internal Transcribed Spacer (5.8S-ITS) region. Altogether, 121 strains of microscopic filamentous fun... [more]
Demineralization of Food Waste Biochar for Effective Alleviation of Alkali and Alkali Earth Metal Species
Yoonah Jeong, Ye-Eun Lee, Dong-Chul Shin, Kwang-Ho Ahn, Jinhong Jung, I-Tae Kim
September 22, 2021 (v1)
Keywords: AAEM, ash, biochar, demineralization, food waste, pyrolysis
Ash-related issues from a considerable amount of alkali and alkaline earth metal species in biochar are major obstacles to the widespread application of biomass in thermoelectric plants. In this study, food wastes were converted into biochar through pyrolysis at 450 °C or 500 °C and four different demineralization approaches, using deionized water, citric acid, nitric acid, and CO2 saturated water. The chemical properties of the resulting biochars were investigated, including proximate analysis, concentrations of inorganic species in biochar and ash, and the crystalline structure. All demineralization treatments produced food waste biochar with sufficient calorific value (>4000 kcal/kg) and a chlorine concentration <0.5%. Among the inorganic species in biochar, Na and K exhibited a significantly higher removal rate through demineralization, which ranged from 54.1%−85.6% and 53.6%−89.9%, respectively; the removal rates of Ca and Mg were lower than 50.0%. The demineralization method w... [more]
Wheat Grinding Process with Low Moisture Content: A New Approach for Wholemeal Flour Production
Waleed H. Hassoon, Dariusz Dziki, Antoni Miś, Beata Biernacka
September 21, 2021 (v1)
Keywords: drying, grinding energy, particle size, wheat dough, wholemeal flour
The objective of this study was to determine the grinding characteristics of wheat with a low moisture content. Two kinds of wheat—soft spelt wheat and hard Khorasan wheat—were dried at 45 °C to reduce the moisture content from 12% to 5% (wet basis). Air drying at 45 °C and storage in a climatic chamber (45 °C, 10% relative humidity) were the methods used for grain dehydration. The grinding process was carried out using a knife mill. After grinding, the particle size distribution, average particle size and grinding energy indices were determined. In addition, the dough mixing properties of wholemeal flour dough were studied using a farinograph. It was observed that decreasing the moisture content in wheat grains from 12% to 5% made the grinding process more effective. As a result, the average particle size of the ground material was decreased. This effect was found in both soft and hard wheat. Importantly, lowering the grain moisture led to about a twofold decrease in the required grin... [more]
Torrefaction of Woody and Agricultural Biomass: Influence of the Presence of Water Vapor in the Gaseous Atmosphere
María González Martínez, Estéban Hélias, Gilles Ratel, Sébastien Thiéry, Thierry Melkior
September 21, 2021 (v1)
Keywords: Biomass, solid mass loss, TGA, torrefaction, water vapor
Biomass preheating in torrefaction at an industrial scale is possible through a direct contact with the hot gases released. However, their high water-content implies introducing moisture (around 20% v/v) in the torrefaction atmosphere, which may impact biomass thermochemical transformation. In this work, this situation was investigated for wheat straw, beech wood and pine forest residue in torrefaction in two complementary experimental devices. Firstly, experiments in chemical regime carried out in a thermogravimetric analyzer (TGA) showed that biomass degradation started from lower temperatures and was faster under a moist atmosphere (20% v/v water content) for all biomass samples. This suggests that moisture might promote biomass components’ degradation reactions from lower temperatures than those observed under a dry atmosphere. Furthermore, biomass inorganic composition might play a role in the extent of biomass degradation in torrefaction in the presence of moisture. Secondly, tor... [more]
Effect of Blanching on Enzyme Inactivation, Physicochemical Attributes and Antioxidant Capacity of Hot-Air Dried Pomegranate (Punica granatum L.) Arils (cv. Wonderful)
Adegoke Olusesan Adetoro, Umezuruike Linus Opara, Olaniyi Amos Fawole
September 21, 2021 (v1)
Keywords: antioxidants, colour, PCA, peroxidase, rehydration, texture
Blanch-assisted hot-air drying of pomegranate arils with blanching treatments 90 °C for 30 s, 100 °C for 60 s, and unblanched (control) arils were investigated. Effects of blanching on enzyme inactivation (polyphenol oxidase and peroxidse), colour, texture, and other qualities of dried arils were discussed. The hot-air drying conditions were 60 °C, 19.6% relative humidity, and 1.0 m s−1 air velocity. Results showed that blanching reduced enzyme activity by 76% and 68% for blanched arils treated at 90 °C for 30 s and 100 °C for 60 s, respectively, compared to unblanched arils. With regard to the total colour difference (TCD), unblanched arils were 20.9% and 16.6% higher than blanched arils treated at 90 °C for 30 s and 100 °C for 60 s, respectively. Furthermore, the total soluble solids (TSS) for unblanched aril increased significantly from 16.1 to 24.9 °Brix after drying, followed by arils treated at 90 °C for 30 s and 100 °C for 60 s (21.4; 18.5 °Brix), respectively. Among the blanchi... [more]
Microbial Production and Enzymatic Biosynthesis of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum FNCC 260 Isolated from Indonesian Fermented Foods
Ida Bagus Agung Yogeswara, Suwapat Kittibunchakul, Endang Sutriswati Rahayu, Konrad J. Domig, Dietmar Haltrich, Thu Ha Nguyen
September 21, 2021 (v1)
Keywords: GABA, glutamate decarboxylase, Indonesian fermented foods, L. plantarum, lactic acid bacteria
In the present study, we isolated and screened thirty strains of GABA (γ-aminobutyric acid)-producing lactic acid bacteria (LAB) from traditional Indonesian fermented foods. Two strains were able to convert monosodium glutamate (MSG) to GABA after 24 h of cultivation at 37 °C based on thin layer chromatography (TLC) screening. Proteomic identification and 16S rDNA sequencing using MALDI-TOF MS identified the strain as Lactobacillus plantarum designated as L. plantarum FNCC 260 and FNCC 343. The highest yield of GABA production obtained from the fermentation of L. plantarum FNCC 260 was 809.2 mg/L of culture medium after 60 h of cultivation. The supplementation of 0.6 mM pyridoxal 5’-phosphate (PLP) and 0.1 mM pyridoxine led to the increase in GABA production to 945.3 mg/L and 969.5 mg/L, respectively. The highest GABA production of 1226.5 mg/L of the culture medium was obtained with 100 mM initial concentration of MSG added in the cultivation medium. The open reading frame (ORF) of 141... [more]
Modifying Effects of Physical Processes on Starch and Dietary Fiber Content of Foodstuffs
Róbert Nagy, Endre Máthé, János Csapó, Péter Sipos
September 16, 2021 (v1)
Keywords: dietary fibers, physical food processing, starch, technological properties of carbohydrates
Carbohydrates are one of the most important nutrients in human consumption. The digestible part of carbohydrates has a significant role in maintaining the energy status of the body and the non-digestible parts like dietary fibers have specific nutritional functions. One of the key issues of food processing is how to influence the technological and nutritional properties of carbohydrates to meet modern dietary requirements more effectively, considering particularly the trends in the behavior of people and food-related health issues. Physical processing methods have several advantages compared to the chemical methods, where chemical reagents, such as acids or enzymes, are used for the modification of components. Furthermore, in most cases, these is no need to apply them supplementarily in the technology, only a moderate modification of current technology can result in significant changes in dietary properties. This review summarizes the novel results about the nutritional and technologic... [more]
Optimising Tropical Fruit Juice Quality Using Thermosonication-Assisted Extraction via Blocked Face-Centered Composite Design
Norazlin Abdullah, Nyuk Ling Chin
August 2, 2021 (v1)
Keywords: guava, pomelo, response surface methodology, soursop, ultrasound
Extraction of tropical fruit juice using simple, efficient, and environmentally friendly technologies is gaining importance to produce high quality juices. Juice from pink-fleshed guava, pink-fleshed pomelo, and soursop was extracted using direct and indirect thermosonication methods by varying intensity, time, and temperature, and compared to those extracted using water bath incubation. Improvised models of juice yield, ascorbic acid, and total soluble solids responses were generated by eliminating insignificant model terms of the factors in full quadratic model using backward eliminating procedure. Main effects, 3D, or 4D plots for each response were developed based on factors that influenced the response. Results showed that the best extraction method for guava and pomelo juices were within indirect thermosonication method of 1 kW, 55 °C and 30 min, and 2.5 kW, 54 °C and 23 min, respectively. Direct thermosonication method at 10% amplitude, 55 °C for 2 to 10 min was more suitable fo... [more]
The Effects of Biofertilizers on Growth, Soil Fertility, and Nutrients Uptake of Oil Palm (Elaeis Guineensis) under Greenhouse Conditions
Aaronn Avit Ajeng, Rosazlin Abdullah, Marlinda Abdul Malek, Kit Wayne Chew, Yeek-Chia Ho, Tau Chuan Ling, Beng Fye Lau, Pau Loke Show
July 29, 2021 (v1)
Keywords: biofertilizers, chemical fertilizer, oil palm seedlings nursery, plant growth promoting rhizobacteria
The full dependency on chemical fertilizers in oil palm plantation poses an enormous threat to the ecosystem through the degradation of soil and water quality through leaching to the groundwater and contaminating the river. A greenhouse study was conducted to test the effect of combinations of biofertilizers with chemical fertilizer focusing on the soil fertility, nutrient uptake, and the growth performance of oil palms seedlings. Soils used were histosol, spodosol, oxisol, and ultisol. The three treatments were T1: 100% chemical fertilizer (NPK 12:12:17), T2: 70% chemical fertilizer + 30% biofertilizer A (CF + BFA), and T3: 70% + 30% biofertilizer B (CF + BFB). T2 and T3, respectively increased the growth of oil palm seedlings and soil nutrient status but seedlings in oxisol and ultisol under T3 had the highest in almost all parameters due to the abundance of more efficient PGPR. The height of seedlings in ultisol under T3 was 22% and 17% more than T2 and T1 respectively, with enhance... [more]
Evaluation of Oxidative Stress Parameters in Healthy Saddle Horses in Relation to Housing Conditions, Presence of Stereotypies, Age, Sex and Breed
Luca Molinari, Giuseppina Basini, Roberto Ramoni, Simona Bussolati, Raffaella Aldigeri, Stefano Grolli, Simone Bertini, Fausto Quintavalla
July 29, 2021 (v1)
Keywords: behavior, free radicals, horse, redox status, stereotypy
Oxidative stress plays an important role in the development of many horse diseases and it has been shown that housing has important implications for the psychophysical well-being of horses. The aim of this study is to determine if there are any differences between the redox status in horses in relation to housing conditions. The four housing conditions analyzed were: single box, without external access and without contact (Cat A), single box with external access and possibility of partial contact (Cat B), group housing with box and large paddock (Cat C), pasture with more than 7 horses and the possibility of green forage for the whole year (Cat D). A group of 117 healthy horses were selected in several private stables in Northern Italy. All subjects treated with any type of drug were excluded. At the end of the enrollment, the 117 selected horses were divided into the four housing categories. Stereotypies were highest in the group of horses in single box, without external access and wi... [more]
The Supervision of Dough Fermentation Using Image Analysis Complemented by a Continuous Discrete Extended Kalman Filter
Olivier Paquet-Durand, Viktoria Zettel, Abdolrahim Yousefi-Darani, Bernd Hitzmann
July 29, 2021 (v1)
Keywords: dough fermentation, estimation, extended Kalman filter, model
Dough fermentation is an important step during the preparation of fermented baking goods. For the supervision of dough fermentation, a continuous-discrete extended Kalman filter was applied, which uses an image analysis system as the measurement. By estimation a fixed number of gas bubbles inside the dough, the radius of an average bubble was determined. A mathematical dough model was used by the extended Kalman filter to estimate the radius of the average bubble, the CO2 concentration of the non-gas dough phase and the number of CO2 molecules in the average bubble. During a fermentation of 50 min, the extended Kalman filter estimated that the average radius increased from 50 µm to 127 µm, the CO2 concentration in the non-gas dough increased to 23 mol/m³, and the CO2 amount in the bubble increased from 0.1 × 10−10 to 4 × 10−10 mol. Also, the specific CO2 production rate was estimated to be in the range from 1.5 × 10−3 to more than 4 × 10−3 mol·m³/kg/s. The advantages of an extended Kal... [more]
Evaluation of Direct Ultrasound-Assisted Extraction of Phenolic Compounds from Potato Peels
Shusheng Wang, Amy Hui-Mei Lin, Qingyou Han, Qin Xu
July 29, 2021 (v1)
Keywords: antioxidant, phenolic compound, potato peel, ultrasound
Potato peels (PPs) are generally considered as agriculture waste. The United States alone generates over one million tons of PPs a year. However, PPs contain valuable phenolic compounds with antioxidant activities. In this study, we evaluated the efficiency of ultrasound-assisted extraction techniques in recovering antioxidants from PPs. These techniques included a direct ultrasound-assisted extraction (DUAE), an indirect ultrasound-assisted extraction (IUAE), and a conventional shaking extraction (CSE). Results of this study showed that DUAE was more effective in extracting phenolic compounds than IUAE and CSE. We also evaluated the factors affecting the yield of total phenolic compounds (TPC) in DUAE, including the temperature, time, acoustic power, ratio of solvent to solids, and size of PPs particles. TPC yield of DUAE was higher, and the extraction rate was faster than IUAE and CSE. Furthermore, TPC yield was strongly correlated to the temperature of the mixture of PPs suspension.... [more]
Recent Trends in Pretreatment of Food before Freeze-Drying
Dariusz Dziki
July 29, 2021 (v1)
Keywords: blanching, drying rate, freeze-drying, high hydrostatic pressure, osmotic dehydration, pulsed electric field, quality, size reduction, ultrasound
Drying is among the most important processes and the most energy-consuming techniques in the food industry. Dried food has many applications and extended shelf life. Unlike the majority of conventional drying methods, lyophilization, also known as freeze-drying (FD), involves freezing the food, usually under low pressure, and removing water by ice sublimation. Freeze-dried materials are especially recommended for the production of spices, coffee, dried snacks from fruits and vegetables and food for military or space shuttles, as well as for the preparation of food powders and microencapsulation of food ingredients. Although the FD process allows obtaining dried products of the highest quality, it is very energy- and time consuming. Thus, different methods of pretreatment are used for not only accelerating the drying process but also retaining the physical properties and bioactive compounds in the lyophilized food. This article reviews the influence of various pretreatment methods such... [more]
How Do Indirect Effects of Contaminants Inform Ecotoxicology? A Review
John W. Fleeger
July 29, 2021 (v1)
Keywords: chemical contaminants, community and ecosystem ecology, indirect effects
Indirect effects in ecotoxicology are defined as chemical- or pollutant-induced alterations in the density or behavior of sensitive species that have cascading effects on tolerant species in natural systems. As a result, species interaction networks (e.g., interactions associated with predation or competition) may be altered in such a way as to bring about large changes in populations and/or communities that may further cascade to disrupt ecosystem function and services. Field studies and experimental outcomes as well as models indicate that indirect effects are most likely to occur in communities in which the strength of interactions and the sensitivity to contaminants differ markedly among species, and that indirect effects will vary over space and time as species composition, trophic structure, and environmental factors vary. However, knowledge of indirect effects is essential to improve understanding of the potential for chemical harm in natural systems. For example, indirect effec... [more]
Study on the Effects of Physical Properties of Tenera Palm Kernel during Drying and Its Moisture Sorption Isotherms
Mina Habibiasr, Mohd Noriznan Mokhtar, Mohd Nordin Ibrahim, Khairul Faezah Md Yunos, Nuzul Amri Ibrahim
July 29, 2021 (v1)
Keywords: equilibrium moisture content, moisture sorption isotherms, palm kernel, physical properties
A study on the effect of the physical properties and moisture sorption isotherm of palm kernels constitutes the critical criteria in evaluating the drying performance. The drying was evaluated as a function of moisture content (MC) in the range of 0.31−0.02 kg/kg (d.b.). Whereas, the equilibrium moisture content (EMC) of palm kernels (whole kernel and ground kernel) was determined experimentally using the standard gravimetric method at different temperatures (50 °C to 80 °C), over a range of relative humidity (RH) from 10% to 81%. Palm kernel length, width, and thickness decrease from 16.08 ± 2.09 mm to 14.17 ± 2.30 mm, 12.06 ± 1.40 mm to 11.24 ± 1.08 mm, and 10.01 ± 1.27 mm to 9.18 ± 1.04 mm, respectively, when MC decreased. Bulk density, surface area, and specific surface area decreased as the MC decreased, while porosity and true density were increased. EMC of palm kernels (whole kernel and ground kernel) decreased with an increase in temperature at constant RH. Modified Oswin and m... [more]
Sorption of Organic Pollutants onto Soils: Surface Diffusion Mechanism of Congo Red Azo Dye
Camelia Smaranda Bețianu, Petronela Cozma, Mihaela Roșca, Elena-Diana Comăniță Ungureanu, Ioan Mămăligă, Maria Gavrilescu
July 28, 2021 (v1)
Keywords: Congo red, diffusion, rate limiting step, soil, sorption mechanism
For the protection of human and ecological receptors from the effects of soil pollution with chemical compounds, we need to know the behavior and transport of pollutants in soil. This work investigated the Congo red (CR) acid dye sorption on three natural soils collected from central and northeastern regions of Romania, symbolized as IS-65, IS-T, and MH-13. To define the mechanism of sorption and identify the rate governing step, various diffusion models such as Weber−Morris intraparticle diffusion, Boyd, film and pores diffusion, and mass transfer analysis have been verified. The intraparticle diffusion analysis of Congo red sorption onto soils has been described by a multi-linear plots, showing that the sorption process takes place by surface sorption and intraparticle diffusion in macro, meso, and micropores. The values of intraparticle diffusion coefficient kid increased with any rise of the initial concentration of pollutant. The results show that the values of pore diffusion coef... [more]
Recombinant Technologies to Improve Ruminant Production Systems: The Past, Present and Future
Andres Alfredo Pech-Cervantes, Muhammad Irfan, Zaira Magdalena Estrada-Reyes, Ibukun Michael Ogunade
July 26, 2021 (v1)
Keywords: hormone, recombinant proteins, ruminants, vaccine
The use of recombinant technologies has been proposed as an alternative to improve livestock production systems for more than 25 years. However, its effects on animal health and performance have not been described. Thus, understanding the use of recombinant technology could help to improve public acceptance. The objective of this review is to describe the effects of recombinant technologies and proteins on the performance, health status, and rumen fermentation of meat and milk ruminants. The heterologous expression and purification of proteins mainly include eukaryotic and prokaryotic systems like Escherichia coli and Pichia pastoris. Recombinant hormones have been commercially available since 1992, their effects remarkably improving both the reproductive and productive performance of animals. More recently the use of recombinant antigens and immune cells have proven to be effective in increasing meat and milk production in ruminant production systems. Likewise, the use of recombinant... [more]
Effect of Titanium Dioxide Nanocomposite Material and Antimicrobial Agents on Mushrooms Shelf-Life Preservation
Rokayya Sami, Abeer Elhakem, Mona Alharbi, Nada Benajiba, Manal Almatrafi, Jing Jing, Mahmoud Helal
July 26, 2021 (v1)
Keywords: antimicrobial agents, mushrooms, nanocomposite material, shelf-life
Mushrooms have limited shelf-life and it can be prolonged if suitable conditions and treatments are effectively applied. In this study, nanocomposite material and antimicrobial agents with a combination of chitosan were used as novel packaging material for mushroom preservation. The microbiological analysis, physicochemical properties, headspace gas analysis, and polyphenol oxidase activity (PPO) during cold storage were investigated. As compared with control, coated mushrooms with chitosan (CHS), and nano-titanium dioxide CHSTiO2 thymol + tween-80 CHSTiO2/TT80 coating treatment showed significantly (p ≤ 0.05) lower respiration rate, microbial contaminations (4.27 log CFU/g), and (5.93 log CFU/g) for total yeast/mold and aerobic plate counts, respectively. The weight loss ratio was the lowest for CHSTiO2/TT80 (10.88% loss) followed by CHSTiO2 (11.76% loss). CHSTiO2/TT80 recorded a higher electrolyte leakage rate (25.84%) and acidity. While the lowest PPO activity was established for CH... [more]
Antimicrobial Resistance of Lactobacillus johnsonii and Lactobacillus zeae in Raw Milk
Jana Výrostková, Ivana Regecová, Mariana Kováčová, Slavomír Marcinčák, Eva Dudriková, Jana Maľová
July 26, 2021 (v1)
Keywords: antimicrobial resistance, Lactobacillus johnsonii, Lactobacillus zeae, MALDI-TOF-MS, milk, PCR
Lactobacillus johnsonii and Lactobacillus zeae are among the lactobacilli with probiotic properties, which occur in sour milk products, cheeses, and to a lesser extent in raw milk. Recently, resistant strains have been detected in various species of lactobacilli. The aim of the study was to determine the incidence of resistant Lactobacillus johnsonii and Lactobacillus zeae strains in various types of raw milk. A total of 245 isolates were identified by matrix-assisted laser desorption/ionization mass spectrometry and polymerase chain reaction methods as Lactobacillus sp., of which 23 isolates of Lactobacillus johnsonii and 18 isolates of Lactobacillus zeae were confirmed. Determination of susceptibility to selected antibiotics was performed using the E-test and broth dilution method, where 7.3% of lactobacilli strains were evaluated as ampicillin-resistant, 14.7% of isolates as erythromycin-resistant, and 4.9% of isolates as clindamycin-resistant. The genus Lactobacillus johnsonii had... [more]
Is Steam Explosion a Promising Pretreatment for Acid Hydrolysis of Lignocellulosic Biomass?
David Steinbach, Andrea Kruse, Jörg Sauer, Jonas Storz
July 26, 2021 (v1)
Keywords: 2nd generation sugars, bioeconomy, biorefinery, furfural, glucose, hydrolyzate, hydroxymethylfurfural, lignocellulose, xylose
For the production of sugars and biobased platform chemicals from lignocellulosic biomass, the hydrolysis of cellulose and hemicelluloses to water-soluble sugars is a crucial step. As the complex structure of lignocellulosic biomass hinders an efficient hydrolysis via acid hydrolysis, a suitable pretreatment strategy is of special importance. The pretreatment steam explosion was intended to increase the accessibility of the cellulose fibers so that the subsequent acid hydrolysis of the cellulose to glucose would take place in a shorter time. Steam explosion pretreatment was performed with beech wood chips at varying severities with different reaction times (25−34 min) and maximum temperatures (186−223 °C). However, the subsequent acid hydrolysis step of steam-exploded residue was performed at constant settings at 180 °C with diluted sulfuric acid. The concentration profiles of the main water-soluble hydrolysis products were recorded. We showed in this study that the defibration of the... [more]
Showing records 1 to 25 of 260. [First] Page: 1 2 3 4 5 Last
[Show All Subjects]