Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Records with Keyword: Hydrogen
Numerical Reconstruction of Hazardous Zones after the Release of Flammable Gases during Industrial Processes
Zdzislaw Salamonowicz, Andrzej Krauze, Malgorzata Majder-Lopatka, Anna Dmochowska, Aleksandra Piechota-Polanczyk, Andrzej Polanczyk
December 6, 2022 (v1)
The storage of large numbers of batteries and accumulators is associated with an increased risk of their ignition, which results in the release of significant amounts of hydrogen into the environment. The aim of the study was to reconstruct hazardous zones after hydrogen and liquefied propane−butane (reference gas) release for different industrial processes with the use of numerical methods. Two numerical tools (Fire Dynamics Simulator and Ansys software) were applied for the three-dimensional reconstruction of flammable gas release. Propane−butane was produced from aerosol packages, and hydrogen was produced during battery charging. Emission was analyzed in an industrial building, and both emissions were independent processes. The obtained results indicated that the hazardous zones correspond to the lower explosive level concentrations for both analyzed gasses. Moreover, the high-resolution computational fluid dynamic (CFD) model for flammable gas emissions provided noninvasive and di... [more]
Forecasting Quantitative Risk Indicators of Investors in Projects of Biohydrogen Production from Agricultural Raw Materials
Anatoliy Tryhuba, Taras Hutsol, Szymon Glowacki, Inna Tryhuba, Sylwester Tabor, Dariusz Kwasniewski, Dmytro Sorokin, Serhii Yermakov
October 30, 2022 (v1)
Subject: Optimization
Keywords: biohydrogen, decarbonization, Hydrogen, market value
Hydrogen is increasingly considered as an environmentally friendly energy source as it stores a large amount of chemical energy per unit mass (142 MJ·kg−1) that can be released without the emission of combustion by-products. The presented research is based on simulation modeling of biohydrogen production projects from agricultural waste. Based on the probability theory and mathematical statistics, the models of the variable market value of biohydrogen and natural gas are substantiated. The results of the research indicate that in 2019, projects regarding the production of biohydrogen from agricultural raw materials were mostly unprofitable for the investors. However, starting in 2030, the forecasted return on investment in biohydrogen production projects from agricultural raw materials indicates that such projects will be profitable for investors, and the number and scale of such projects will significantly increase worldwide.
A Thermal Design of a 1 kW-Class Shell and Tube Methanol Steam Reforming System with Internal Evaporator
Dongjin Yu, Ngoc Trinh Van, Jinwon Yun, Sangseok Yu
June 10, 2021 (v1)
Keywords: Hydrogen, methanol steam reformer, reforming rate, shell-and-tube, thermal efficiency
Due to its low operating temperature, the performance of a methanol steam reformer depends on efficient thermal integration. In particular, the integration of the evaporator is crucial to enhance thermal efficiency. This paper presents two different configurations to utilize thermal energy for evaporation of methanol/water mixture. The reformer system is composed of a methanol steam reformer, a burner, and two different evaporators such as internal evaporator and external evaporator. Moreover, since the performance of the reforming system strongly depends on thermal utilization, a heat recovery module is designed for methanol reforming system with internal evaporator. The heat duty and steam to carbon ratio (S/C) are the variables for evaluation of its suitability. The experimental results indicate that the internal evaporator with the auxiliary heat recovery module provides stable conditions over wide operating ranges.
How to Power the Energy−Water Nexus: Coupling Desalination and Hydrogen Energy Storage in Mini-Grids with Reversible Solid Oxide Cells
Arianna Baldinelli, Linda Barelli, Gianni Bidini, Giovanni Cinti, Alessandro Di Michele, Francesco Mondi
June 2, 2021 (v1)
Keywords: desalination, electrolysis, Energy Storage, Hydrogen, mini-grids, power-to-gas, renewables, rSOC, sector-coupling, Water
Sustainable Development Goals establish the main challenges humankind is called to tackle to assure equal comfort of living worldwide. Among these, the access to affordable renewable energy and clean water are overriding, especially in the context of developing economies. Reversible Solid Oxide Cells (rSOC) are a pivotal technology for their sector-coupling potential. This paper aims at studying the implementation of such a technology in new concept PV-hybrid energy storage mini-grids with close access to seawater. In such assets, rSOCs have a double useful effect: charge/discharge of the bulk energy storage combined with seawater desalination. Based on the outcomes of an experimental proof-of-concept on a single cell operated with salty water, the operation of the novel mini-grid is simulated throughout a solar year. Simulation results identify the fittest mini-grid configuration in order to achieve energy and environmental optimization, hence scoring a renewable penetration of more t... [more]
Opportunities and Barriers of Hydrogen−Electric Hybrid Powertrain Vans: A Systematic Literature Review
Oscar Castillo, Roberto Álvarez, Rosario Domingo
April 27, 2021 (v1)
Keywords: delivery van, fuel cell, Hydrogen, last-mile delivery, light commercial vehicles, medium-duty vehicles, range extender, sustainable city logistics, urban freight transport, urban logistics
The environmental impact of the road transport sector, together with urban freight transport growth, has a notable repercussions in global warming, health and economy. The need to reduce emissions caused by fossil fuel dependence and to foster the use of renewable energy sources has driven the development of zero-emissions powertrains. These clean transportation technologies are not only necessary to move people but to transport the increasing demand for goods and services that is currently taking place in the larger cities. Full electric battery-powered vans seem to be the best-placed solution to the problem. However, despite the progress in driving range and recharge options, those and other market barriers remain unsolved and the current market share of battery electric vehicles (BEVs) is not significant. Based on the development of hydrogen fuel cell stacks, this work explains an emerging powertrain architecture concept for N1 class type vans, that combines a battery-electric confi... [more]
Aspen Plus Simulation of a Rectisol Process for Blue Hydrogen Production
Thomas A Adams II
March 12, 2021 (v2)
This is an Aspen Plus v12 model for a Rectisol process used for removing CO2 from a shifted syngas stream arising from steam methane reforming for the purposes of Blue hydrogen production. It is intended for educational use, and is useful as a starting point for those interested in simulating this process. It is not optimized in any way, but it contains a working flowsheet for those interested in modifying it for your own purposes.

The simulation was developed using the simulation strategy given in Adams TA II, Khojestah Salkuyeh Y, Nease J. Processes and Simulations for Solvent-based CO2Capture and Syngas Cleanup. Chapter in: Reactor and process design for in sustainable energy technology. Elsevier (2014). Pages 163-232. ISBN: 978-0-444-59566-9. It is based on the process discussed in Doctor RD, Molburg JC, Thimmapuram PR, Berry GF, Livengood CD. Gasification combined cycle: carbon dioxide recovery, transport, and disposal. US DOE Report, Argonne National Laboratory ANL/ESD-24. 19... [more]
Mathematical Modeling and Stability Analysis of a Two-Phase Biosystem
Milen Borisov, Neli Dimitrova, Ivan Simeonov
October 26, 2020 (v1)
Keywords: anaerobic digestion, equilibrium points, Hydrogen, mathematical model, methane, numerical simulation, stability analysis, two-phases process
We propose a new mathematical model describing a biotechnological process of simultaneous production of hydrogen and methane by anaerobic digestion. The process is carried out in two connected continuously stirred bioreactors. The proposed model is developed by adapting and reducing the well known Anaerobic Digester Model No 1 (ADM1). Mathematical analysis of the model is carried out, involving existence and uniqueness of positive and uniformly bounded solutions, computation of equilibrium points, investigation of their local stability with respect to practically important input parameters. Existence of maxima of the input−output static characteristics with respect to hydrogen and methane is established. Numerical simulations using a specially elaborated web-based software environment are presented to demonstrate the dynamic behavior of the model solutions.
A Novel Process of H2/CO2 Membrane Separation of Shifted Syngas Coupled with Gasoil Hydrogenation
Weirong Huang, Xiaobin Jiang, Gaohong He, Xuehua Ruan, Bo Chen, Aazad Khan Nizamani, Xiangcun Li, Xuemei Wu, Wu Xiao
July 17, 2020 (v1)
Keywords: Carbon Dioxide, gasoil hydrogenation, Hydrogen, PEO membrane, PI membrane, separation
A novel process of membrane separation for H2/CO2 of shifted syngas coupled with gasoil hydrogenation (NMGH) is proposed. First, a new process, with two-stage CO2-selective and one-stage H2-selective membranes, was developed to substitute the conventional PSA separation devices to remove CO2 and purify H2 in coal gasification refineries to reduce energy consumption and investment costs. Then, the process was coupled with gasoil hydrogenation and the recycled H2 produced by the hydrogenation reactor could be further purified by the H2-selective membrane, which increased the H2 concentration of the hydrogenation reactor inlet by about 11 mol.% compared with the conventional direct recycling process, and the total system pressure was reduced by about 2470 kPa. At the same time, this additional membrane separation and purification prevented the accumulation of CO/CO2 in the recycled H2, which ensured the activity of the catalyst in the reactor and the long-term stable operation of the devi... [more]
Alkaline Water Electrolysis Powered by Renewable Energy: A Review
Jörn Brauns, Thomas Turek
April 14, 2020 (v1)
Keywords: alkaline water electrolysis, dynamic, fluctuations, Hydrogen, limitations, photovoltaic, Renewable and Sustainable Energy, solar, sustainable, Wind
Alkaline water electrolysis is a key technology for large-scale hydrogen production powered by renewable energy. As conventional electrolyzers are designed for operation at fixed process conditions, the implementation of fluctuating and highly intermittent renewable energy is challenging. This contribution shows the recent state of system descriptions for alkaline water electrolysis and renewable energies, such as solar and wind power. Each component of a hydrogen energy system needs to be optimized to increase the operation time and system efficiency. Only in this way can hydrogen produced by electrolysis processes be competitive with the conventional path based on fossil energy sources. Conventional alkaline water electrolyzers show a limited part-load range due to an increased gas impurity at low power availability. As explosive mixtures of hydrogen and oxygen must be prevented, a safety shutdown is performed when reaching specific gas contamination. Furthermore, the cell voltage sh... [more]
Ultra-Pure Hydrogen via Co-Valorization of Olive Mill Wastewater and Bioethanol in Pd-Membrane Reactors
David Alique, Giacomo Bruni, Raúl Sanz, José Antonio Calles, Silvano Tosti
April 14, 2020 (v1)
Keywords: bioethanol, Hydrogen, membrane reactor, olive mill wastewater, palladium membrane, Steam Reforming
Olive mill wastewater (OMW) presents high environmental impact due to the fact of its elevated organic load and toxicity, especially in Mediterranean countries. Its valorization for simultaneous pollutants degradation and green energy production is receiving great attention, mainly via steam reforming for hydrogen generation. Following previous works, the present research goes into detail about OMW valorization, particularly investigating for the first time the potential benefits of OMW−bioethanol mixtures co-reforming for ultra-pure hydrogen production in Pd-membrane reactors. In this manner, the typical large dilution of OMW and, hence, excess water can be used as a reactant for obtaining additional hydrogen from ethanol. Fresh OMW was previously conditioned by filtration and distillation processes, analyzing later the effect of pressure (1−5 bar), oxidizing conditions (N2 or air as carrier gas), gas hourly space velocity (150−1500 h−1), and alcohol concentration on the co-reforming... [more]
Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp
Joanna Berlowska, Katarzyna Pielech-Przybylska, Maria Balcerek, Weronika Cieciura, Sebastian Borowski, Dorota Kregiel
December 10, 2019 (v1)
Subject: Biosystems
Keywords: bioethanol, Hydrogen, hydrolysis, methane, stillage, sugar beet pulp
Large amounts of waste biomass are generated in sugar factories from the processing of sugar beets. After diffusion with hot water to draw the sugar from the beet pieces, a wet material remains called pulp. In this study, waste sugar beet pulp biomass was enzymatically depolymerized, and the obtained hydrolyzates were subjected to fermentation processes. Bioethanol, biomethane, and biohydrogen were produced directly from the substrate or in combined mode. Stillage, a distillery by-product, was used as a feedstock for anaerobic digestion. During biosynthesis of ethanol, most of the carbohydrates released from the sugar beet pulp were utilized by a co-culture of Saccharomyces cerevisiae Ethanol Red, and Scheffersomyces stipitis LOCK0047 giving 12.6 g/L of ethanol. Stillage containing unfermented sugars (mainly arabinose, galactose and raffinose) was found to be a good substrate for methane production (444 dm³ CH₄/kg volatile solids (VS)). Better results were achieved with this medium tha... [more]
Lanthanum Effect on Ni/Al2O3 as a Catalyst Applied in Steam Reforming of Glycerol for Hydrogen Production
Nuria Sánchez, José María Encinar, Sergio Nogales, Juan Félix González
September 23, 2019 (v1)
Keywords: biodiesel, Hydrogen, non-noble transition metals, Syngas, X-ray photoelectron spectroscopy
Nowadays, the massive production of biodiesel leads to a surplus of glycerol. Thus, new applications of this by-product are being developed. In this study, glycerol steam reforming was carried out with Ni catalysts supported on Al2O3 rings and La-modified Al2O3. The catalysts were characterized by N2 physical adsorption, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and thermogravimetry. Both catalysts were effective in glycerol steam reforming. However, Ni/Al2O3 activity decreased over reaction time. Ni/La2O3/Al2O3 showed the best stability during the reaction. In addition, the activity of the modified support, La2O3/Al2O3, was evaluated. The modification of the support lent catalytic properties to the solid. Some conditions such as catalyst arrangement (catalyst in the first or second reactor), space velocity, and reaction temperature were studied. The highest hydrogen production was obtained when half the amount of the catalyst was located in bot... [more]
A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies
Jason Moore, Bahman Shabani
January 31, 2019 (v1)
Subject: Energy Policy
Keywords: Australia, battery, electrical energy storage, Hydrogen, policy, Renewable and Sustainable Energy
This paper provides a critical study of current Australian and leading international policies aimed at supporting electrical energy storage for stationary power applications with a focus on battery and hydrogen storage technologies. It demonstrates that global leaders such as Germany and the U.S. are actively taking steps to support energy storage technologies through policy and regulatory change. This is principally to integrate increasing amounts of intermittent renewable energy (wind and solar) that will be required to meet high renewable energy targets. The relevance of this to the Australian energy market is that whilst it is unique, it does have aspects in common with the energy markets of these global leaders. This includes regions of high concentrations of intermittent renewable energy (Texas and California) and high penetration rates of residential solar photovoltaics (PV) (Germany). Therefore, Australian policy makers have a good opportunity to observe what is working in an i... [more]
Coordination Control of a Novel Wind Farm Configuration Including a Hydrogen Storage System and a Gas Turbine
Shihua Xuan, Weihao Hu, Jun Yao, Zhe Chen
January 7, 2019 (v1)
Keywords: electrolyzer, gas turbine, Hydrogen, wind farm
This paper proposes a novel configuration that combines wind turbines, an electrolyzer, and a gas turbine with the corresponding generator. A control strategy for this configuration is also proposed. The purpose of this configuration and its control strategy is to make the wind farm work like a conventional power plant from a grid’s point of view. The final proposed configuration works properly with the proposed control strategy, the three times per revolution (3p) oscillation frequency is removed and the output power fluctuations caused by wind fluctuation are compensated. The final power output of the proposed configuration is constant like that of a conventional power plant, and it can change according to the different requirements of the transmission system operator.
Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle
Rahul Bhosale, Anand Kumar, Fares AlMomani, Ujjal Ghosh, Mohammad Saad Anis, Konstantinos Kakosimos, Rajesh Shende, Marc A. Rosen
November 27, 2018 (v1)
Keywords: computational analysis, Hydrogen, samarium oxide, solar thermochemical, thermodynamics, water splitting
The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm₂O₃ into Sm and O₂. The second (non-solar) step corresponds to the production of H₂ via a water splitting reaction and the oxidation of Sm to Sm₂O₃. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH) is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle) and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel) attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pre... [more]
Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis
Guangzai Nong, Zongwen Zhou, Shuangfei Wang
October 22, 2018 (v1)
Keywords: black liquor, electrolysis, Energy, Hydrogen, lignin
Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents) consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.
Ventilation System Influence on Hydrogen Explosion Hazards in Industrial Lead-Acid Battery Rooms
Dorota Brzezińska
September 21, 2018 (v1)
Keywords: battery, CFD modelling, explosion, Hydrogen, ventilation
When charging most types of industrial lead-acid batteries, hydrogen gas is emitted. A large number of batteries, especially in relatively small areas/enclosures, and in the absence of an adequate ventilation system, may create an explosion hazard. This paper describes full scale tests, which demonstrate conditions that can occur in a battery room in the event of a ventilation system breakdown. Over the course of the tests, full scale hydrogen emission experiments were performed to study emission time and flammable cloud formation according to the assumed emission velocity. On this basis, the characteristics of dispersion of hydrogen in the battery room were obtained. The CFD model Fire Dynamic Simulator created by National Institute of Standards and Technology (NIST) was used for confirmation that the lack of ventilation in a battery room can be the cause of an explosive atmosphere developing, and leading to, a potential huge explosive hazard. It was demonstrated that different ventil... [more]
The Optimization of Hybrid Power Systems with Renewable Energy and Hydrogen Generation
Fu-Cheng Wang, Yi-Shao Hsiao, Yi-Zhe Yang
September 20, 2018 (v1)
Keywords: cost, fuel cell, hybrid power system, Hydrogen, Optimization, reliability, solar, Wind
This paper discusses the optimization of hybrid power systems, which consist of solar cells, wind turbines, fuel cells, hydrogen electrolysis, chemical hydrogen generation, and batteries. Because hybrid power systems have multiple energy sources and utilize different types of storage, we first developed a general hybrid power model using the Matlab/SimPowerSystemTM, and then tuned model parameters based on the experimental results. This model was subsequently applied to predict the responses of four different hybrid power systems for three typical loads, without conducting individual experiments. Furthermore, cost and reliability indexes were defined to evaluate system performance and to derive optimal system layouts. Finally, the impacts of hydrogen costs on system optimization was discussed. In the future, the developed method could be applied to design customized hybrid power systems.
Dry Reforming of Methane Using a Nickel Membrane Reactor
Jonas M. Leimert, Jürgen Karl, Marius Dillig
July 31, 2018 (v1)
Keywords: Dry Reforming, Hydrogen, membrane reactor, Membranes, nickel
Dry reforming is a very interesting process for synthesis gas generation from CH 4 and CO 2 but suffers from low hydrogen yields due to the reverse water⁻gas shift reaction (WGS). For this reason, membranes are often used for hydrogen separation, which in turn leads to coke formation at the process temperatures suitable for the membranes. To avoid these problems, this work shows the possibility of using nickel self-supported membranes for hydrogen separation at a temperature of 800 ∘ C. The higher temperature effectively suppresses coke formation. The paper features the analysis of the dry reforming reaction in a nickel membrane reactor without additional catalyst. The measurement campaign targeted coke formation and conversion of the methane feedstock. The nickel approximately 50% without hydrogen separation. The hydrogen removal led to an increase in methane conversion to 60⁻90%.
Direct Steam Generation Concentrated Solar Power Plant with a Decalin/Naphthalene Thermochemical Storage System
Haoxiang Lai, Thomas A. Adams II
November 20, 2018 (v2)
This study presents the design and analysis of a new integrated direct steam generation (DSG) concentrated solar power (CSP) plant with a decalin/naphthalene thermochemical storage system. Model simulations were performed in accordance to historical hourly solar radiation data over a year, using a combination of Aspen Plus v10, MATLAB 2016b, and Microsoft Excel VBA. It was found that the proposed plant feasibly stored and discharged energy, based on the solar radiation and chemical storage availability, to maintain base-load power productions (250 MW or 120 MW) with an overall efficiency of 14.6%. The effectiveness of the designed storage system was found to be comparable to a molten salt storage system which is currently used in existing CSP plants. The proposed integrated DSG CSP plant with a decalin/naphthalene thermochemical storage system shows promise for being an alternative to existing CSP plants.
Direct Steam Generation Concentrated Solar Power Plant with a Decalin/Naphthalene Thermochemical Storage System
Haoxiang Lai, Thomas A. Adams II
June 12, 2018 (v1)
This study presents the design and analysis of a new integrated direct steam generation (DSG) concentrated solar power (CSP) plant with a decalin/naphthalene thermochemical storage system. Model simulations were performed in accordance to historical hourly solar radiation data over a year, using a combination of Aspen Plus v10, MATLAB 2016b, and Microsoft Excel VBA. It was found that the proposed plant feasibly stored and discharged energy, based on the solar radiation and chemical storage availability, to maintain base-load power productions (250 MW or 120 MW) with an overall efficiency of 14.6%. The effectiveness of the designed storage system was found to be comparable to a molten salt storage system which is currently used in existing CSP plants. The proposed integrated DSG CSP plant with a decalin/naphthalene thermochemical storage system shows promise for being an alternative to existing CSP plants.
[Show All Keywords]