Browse
Keywords
Records with Keyword: Carbon Dioxide Capture
CO2 Separation, Transportation, and Sequestration
October 13, 2025 (v1)
Subject: Process Design
Keywords: Aspen Plus, Carbon Dioxide, Carbon Dioxide Capture, Carbon Dioxide Sequestration, GAMS, Superstructure Optimization
CCS is a well investigated and fairly promising technology for reducing the emission of carbon dioxide (CO2) to the atmosphere. However, it is rarely implemented in the industry due to its high cost. Therefore, this work proposes a cost optimized CCS chain which can be operated flexibly and safely. For the capture process a post combustion chemical absorption technology is chosen due to its retrofitting possibility to already existing power plants and its low capture cost. In order to find a cost efficient absorption process for different scenarios, the five most promising process configurations from previous work are combined into a superstructure in a rigorous rate based reactive Aspen Plus model. This in turn is optimized by a two-stage stochastic programming approach in Matlab. The optimal supply chain network is identified by a tailor made transshipment model implemented in GAMS, which accounts for the most promising transportation units, storage sites as well as direct utilizatio... [more]
Decision Support Tool for Sustainable Small to Medium-Volume Natural Gas Utilization
March 14, 2025 (v1)
Subject: Modelling and Simulations
This study presents a simple tool to provide decision-makers data that will facilitate informed decisions in selecting utilization for small- to medium-scale utilization of stranded natural gas resources that would otherwise be flared set to be flared. The methodology involves the simulation of different natural gas utilization technologies on Aspen Plus simulation software and utilizing the results to develop a tool on Python that enables the user to assess recoverable valuable products from different natural gas profiles. Ten utilization technologies were implemented, and six different natural gas profile (rich and lean) were used as case studies to ascertain the capabilities of the tool. The supplimentary material provides the interface of the proposed tool.
Life cycle assessment of a post-combustion CO2 capture unit through chemical absorption
June 27, 2025 (v1)
Subject: Environment
This study evaluates the environmental impact of carbon capture technology in the context of reducing industrial CO2 emissions within Eco-Industrial Parks (EIP). The primary focus is on the post-combustion absorption process, which uses solvents like monoethanolamine (MOA) to capture CO2 before it is released into the atmosphere. The captured CO2 is either stored or utilized to prevent further contribution to climate change. The study employs a Life Cycle Assessment (LCA) methodology to compare the environmental impacts of two scenarios: one with CO2 capture and the other with the direct release of CO2 into the atmosphere. The LCA considers inputs, outputs, energy requirements, and materials needed for the CO2 absorption process. The functional unit of the assessment is 1000 tons of CO2, to standardize comparisons between both scenarios. Results show that the CO2 absorption process significantly reduces the impact on climate change, capturing over 80% of the CO2 from the stream. In ter... [more]
Life Cycle Assessment of Synthetic Methanol Production: Integrating Alkaline Electrolysis and Direct Air Capture Across Regional Grid Scenarios
June 27, 2025 (v1)
Subject: Modelling and Simulations
A transition to low-carbon fuels is integral in addressing the challenge of climate change. An essential transformation is underway in the transportation sector, one of the primary sources of global greenhouse gas emissions. The electrofuels that represent methanol synthesis via power-to-fuel technology have the potential to decarbonize the sector. This paper outlines a critical comprehensive life cycle assessment for electrofuels, with this study focusing on the production of synthetic methanol from renewable hydrogen from water electrolysis coupled with carbon from the direct air capture (DAC) process. This study has provided a comparison of the environmental impacts of synthetic methanol produced from grids of five regions (India, the US, China, Switzerland, and the EU) with conventional methanol from coal gasification and natural gas reforming. The results from this impact assessment show a high dependency of environmental scores on the footprint of the grid. Switzerland, with its... [more]
Integration of Direct Air Capture with CO2 Utilization Technologies powered by Renewable Energy Sources to deliver Negative Carbon Emissions
June 27, 2025 (v1)
Subject: Process Design
Keywords: Carbon Dioxide Capture, CO2 utilization, Energy Efficiency, Modelling and Simulations, Process Design, Renewable and Sustainable Energy
Reduction of greenhouse gas emissions is an important environmental element to actively combat the global warming and climate change. In view of reducing the CO2 concentration from the atmosphere, the Direct Air Capture (DAC) options are promising technologies in delivering negative carbon emissions. The integration of renewable-powered DAC systems with the CO2 utilization technologies can deliver both negative carbon emissions as well as reduced energy and economic penalties of overall decarbonized processes. This work evaluates the innovative energy- and cost-efficient potassium - calcium looping cycle as promising direct air capture technology integrated with various CO2 catalytic transformations into basic chemicals / energy carriers (e.g., synthetic natural gas, methanol etc.). The integrated system will be powered by renewable energy (in terms of both heat and electricity requirements). The investigated DAC concept is set to capture 1 Mt/y CO2 with about 75 % carbon capture rate.... [more]
CO2 recycling plant for decarbonizing hard-to-abate industries: Empirical modelling and Process design of a CCU plant- A case study
June 27, 2025 (v1)
Subject: Process Design
Keywords: Carbon Dioxide Capture, Electrocatalysis, Formic acid, Modelling, Optimization, Process Design
Climate change, driven by increasing CO2 emissions, necessitates innovative mitigation strategies, particularly for hard-to-abate industries. Carbon Capture and Utilization technologies offer promising solutions by capturing CO2 from industrial flue gases and converting it into value-added products. Among capture methods, membrane separation stands out for its compact design, energy efficiency, and scalability. Following capture, CO2 can be converted into chemicals like formic acid using electrocatalytic processes, enabling energy storage from renewable sources. This study proposes the design of an industrial demonstrator for a CO2 recycling plant targeting hard-to-abate sectors such as textile and cement industries. The system integrates polymeric membranes for CO2 capture and a 100 cm² electrochemical reactor for CO2 electroreduction into formic acid. Experimental data from both stages are used to develop predictive models based on artificial neural networks (ANN), optimizing system... [more]
ML-based adsorption isotherm prediction of metal-organic frameworks for carbon dioxide and methane separation adsorbent screening
June 27, 2025 (v1)
Subject: Modelling and Simulations
The efficient separation of carbon dioxide (CO2) and methane (CH4) is crucial for chemical processes, including biogas upgrading and natural gas purification. Metal-organic frameworks (MOFs) have gained significant attention as promising adsorbents for these processes due to their high porosity and tunable structures. Estimating the adsorption capacity of MOFs is essential for screening high performing adsorbents. While molecular simulations are commonly used to estimate the adsorption capacities, their computational intensity acts as a bottleneck in screening MOF adsorbents. In this study, we propose a machine learning (ML)-based framework for the high-throughput prediction of adsorption isotherms for CO2 and CH4 in MOFs. A graph neural network (GNN) model was developed to predict adsorption capacities, effectively replacing the time-consuming molecular simulations. The GNN model processes the structural graphs of MOFs, capturing their spatial configurations, such as surface structure... [more]
Decision Support Tool for Sustainable Small to Medium-Volume Natural Gas Utilization
June 27, 2025 (v1)
Subject: Process Control
This study presents a simple tool to provide decision-makers data that will facilitate informed decisions in selecting utilization for small- to medium-scale utilization of stranded natural gas resources that would otherwise be flared. The methodology involves the simulation of different natural gas utilization technologies on Aspen Plus simulation software and utilizing the results to develop a tool on python that enables the user to assess recoverable valuable products from different natural gas profiles. Ten utilization technologies were implemented and six different natural gas profiles (rich and lean) were used as case studies to ascertain the capabilities of the tool. The results provide the user with the Net Present Values (NPV) of different technologies and the most profitable or infeasible utilization technology. The results also show the potentials of utilizing the gas over flaring. For very small volumes of gas the results favored the compressed natural gas (CNG) with positi... [more]
Cost-effective Process Design and Optimization for Decarbonized Utility Systems Integrated with Renewable Energy and Carbon Capture Systems
June 27, 2025 (v1)
Subject: Process Design
Keywords: Carbon Dioxide Capture, Cost optimization, Industrial utility operation, Process integration, Renewable and Sustainable Energy
Industrial decarbonization is considered one of the key objectives in mitigating global climate change. To achieve a net-zero industry requires actively transitioning from fossil fuel-based energy sources to renewable alternatives. However, the intermittent nature of renewable energy sources poses challenges to a reliable and robust supply of energy for industrial sites. Therefore, the integration of renewable energy systems with existing industrial processes, subject to energy storage solutions and main grid interconnections, is essential to enhance operational reliability and overall energy resilience. This study proposes a novel framework for the design and optimization of industrial utility systems integrated with renewable energy sources. A monthly-based analysis is adopted to consider variable demand and non-constant availability in renewable energy supply. Moreover, carbon capture is considered in this work as a viable decarbonization measure, which can be strategically combined... [more]
10. LAPSE:2025.0339
Modeling, Simulation and Optimization of a Carbon Capture Process Through a TSA Column
June 27, 2025 (v1)
Subject: Modelling and Simulations
Keywords: Adsorption, Carbon Dioxide Capture, GAMS, Modelling and Simulations, Optimization, Technoeconomic Analysis
By capturing carbon dioxide from biomass flue gases, energy processes with negative carbon footprint are achieved. Among carbon capture methods, the fluidized temperature swing adsorption (TSA) column is a promising low-pressure alternative, but it has been developed on small scales. This work aims to model, simulate and optimize a fluidized TSA multi-stage equilibrium system to obtain a cost estimate and a conceptual design for future process scale up. A mathematical model described adsorption in multiple stages, each with a heat exchanger, coupled to the desorption operation. The model was based on elementary macroscopic molar and energy balances, coupled to pressure drops in a fluidized bed designed to operate close to the minimum fluidization velocity, and coupled to thermodynamics of adsorption equilibrium of a mixture of carbon dioxide and nitrogen in solid sorbents (the Toth equilibrium isotherm was used). The complete fluidized TSA process has been optimized to minimize costs,... [more]
11. LAPSE:2025.0322
Physics-based and data-driven hybrid modelling and dynamic adaptive multi-objective optimization of chemical reactors for CO2 capture via enhanced weathering
June 27, 2025 (v1)
Subject: Numerical Methods and Statistics
Keywords: Carbon Dioxide Capture, Chemical reactors, Data-driven, Enhanced weathering, Optimization
Enhanced weathering (EW) of alkaline minerals in chemical reactors with a controlled environment is recognized as a promising approach for gigaton-level carbon dioxide removal. However, reactor configuration and operating conditions must be optimized to balance the interfacial areas between gas, liquid and solid phases prior to industrial application. We developed a physics-based and data-driven hybrid modelling approach, coupled with multi-objective optimization, to study and compare three typical chemical reactors, i.e., trickle bed, packed bubbling columns, and stirred slurry reactors, and the optimal design to improve CO2 capture rate and reduce energy and water consumptions. Then an adaptive optimization is proposed to dynamically adjust the operating of the reactors in response to intermittent CO2 emission and renewable energy supply. Results indicated that forced stirring enhances CO2 capture rates by accelerating mass transport but increases energy consumption. Trickle bed reac... [more]
12. LAPSE:2025.0296
Pipeline Network Growth Optimisation for CCUS: A Case Study on the North Sea Port Cluster
June 27, 2025 (v1)
Subject: Modelling and Simulations
Keywords: Carbon Capture, Carbon Dioxide Capture, Energy, Genetic Algorithm, Modelling and Simulations
By 2050 around 12% of cumulative emissions reductions will come from Carbon Capture, Utilisation and Storage (CCUS) making it an essential component in the path towards net zero [1]. Focus will initially be on the retrofitting of fossil fuel power plants, which will shift to hard-to-decarbonise industries such as iron, steel, and concrete [1]. Such industries are often grouped together in industrial clusters. Comprising both large and small point sources concentrated over a defined geographical area, industrial clusters offer an opportunity to maximise the impact of CCUS whilst also improving economic feasibility [2]. The North Sea Port (NSP) cluster an example of this. Within the NSP cluster an initial set of five emitters are to join a capture, conditioning, and transport network by 2030. From there other emitters within the area will be able to join incrementally to 2050 [3]. However, the emitters who join and the timing of their connection will have a significant effect on the evo... [more]
13. LAPSE:2025.0264
Optimized integration strategies for the PMR-based H2 production with CO2 capture process
June 27, 2025 (v1)
Subject: Process Design
Keywords: Carbon Dioxide Capture, Energy Efficiency, Hydrogen, Process Design, Process Intensification, proton conducting membrane
This work develops process options using a novel protonic membrane reformer (PMR) and liquefaction-based CO2 capture process for low-carbon hydrogen production from natural gas. Several hybrid concepts of the PMR and liquefaction process are suggested based on the strategies to handle the residual gas from the reformer. The process intensification and optimization results indicate that the hybrid system with a water-gas-shift reactor and off-gas recycling guarantees high H2 and CO2 recovery rates for the PMR operating at relatively low H2 recovery. The hybrid concept also has 74% energy conversion efficiency, which is higher than a conventional steam-methane reforming (SMR)-based H2 production with chemical absorption CO2 capture.
14. LAPSE:2025.0262
Integrating Direct Air Capture and HVAC Systems: An Economic Perspective on Cost Savings
June 27, 2025 (v1)
Subject: Process Design
Keywords: Carbon Dioxide Capture, DAC, Energy Efficiency, HVAC, Techno-economics
Direct Air Capture (DAC) technology has gained significant attention as a promising solution for mitigating CO2 emissions and meeting climate goals. However, the current challenges of high energy demand, capital costs, and scalability present critical challenges to the widespread deployment of DAC systems. Integrating DAC with Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings offers a potential solution by enhancing indoor air quality while capturing CO2, thus lowering energy consumption and capital investment compared to standalone DAC systems. This study evaluates the techno-economic performance of an integrated DAC-HVAC system against a standalone DAC system. This analysis combines thermodynamic estimation of CO2 and H2O loadings and energy requirements with an economic evaluation of capital and operating costs to calculate the levelized cost of CO2 capture (LCOD) for both DAC-HVAC and DAC-standalone. A sensitivity analysis explores the effects of varying climat... [more]
15. LAPSE:2025.0219
An Automated CO2 Capture Pilot Plant at ULiège: A Platform for the Validation of Process Models and Advanced Control
June 27, 2025 (v1)
Subject: Modelling and Simulations
Keywords: Aspen Plus, Carbon Dioxide Capture, MEA, pilot
The deployment of CO2 capture technologies at a large scale will largely benefit from the knowledge acquired during pilot testing. A mobile CO2 capture pilot unit is currently being designed at the University of Liège. Here, the pilot plant is introduced, and the column sizing results are presented. The sizing was performed with a process model built in Aspen Plus. Overall, the pilot installation is expected to serve for process model validation, data collection and technology de-risking while assisting Belgian industries in their transition towards carbon neutrality.
16. LAPSE:2025.0212
Process simulation and thermodynamic analysis of newly synthesized pre-combustion CO2 capture system using novel Ionic liquids for H2 production
June 27, 2025 (v1)
Subject: Modelling and Simulations
This paper evaluates the thermodynamic efficiency of a newly synthesized large-scale pre-combustion CO2 capture process using a novel ionic liquid (IL) 1-octyl-2,3-methylimidazolium thiocyanate [OMMIM][SCN] for blue H2 production. In addition, the potential eco-toxicity of the selected IL was assessed using the ADMETlab 2.0 web tool. The results of these analyses were compared to those of an established IL 1-butyl-2,3-dimethylimidazolium bis(trifluoromethyl sulfonyl)imide [BMMIM][TF2N]. The eco-toxicity assessment confirmed that [OMMIM][SCN] is less environmentally toxic than [BMMIM][TF2N]. Thermodynamic analysis of the novel system shows the COOLER unit accounts for the highest energy demand; however, the [OMMIM][SCN] system demonstrates a 7.45% reduction in energy consumption in the COOLER unit compared to [BMMIM][TF2N]. The system experienced the highest exergy losses (irreversibilities) in the COOLER unit for [BMMIM][TF2N] (12982 kW) and in the flash separator unit for [OMMIM][SCN]... [more]
17. LAPSE:2025.0182
Economic Evaluation of Solvay Processes for Sodium Bicarbonate Production with Brine and Carbon Tax considerations
June 27, 2025 (v1)
Subject: Process Design
Keywords: Brine Management, Carbon Dioxide Capture, Carbon Tax, Solvay Process
Reject brine discharge and high CO2 emissions from desalination plants are major contributors to environmental pollution. Managing reject brine involves significant costs, mainly due to the energy-intensive processes required for brine dilution and disposal. In this context, Solvay process represents a mitigation scheme that can effectively reduce reject brine salinity and sequestering CO2 while producing sodium bicarbonates simultaneously. The Solvay process represents a combined approach that can effectively manage reject brine and CO2 in a single reaction while producing an economically feasible product. Therefore, this study reports a systematic techno-economics assessment of conventional and modified Solvay processes, while incorporating brine and carbon tax. The model evaluates the significance of implementing a brine and CO2 tax on the economics of conventional and Ca(OH)2 modified Solvay compared to industries expenditures on brine dilution and treatment before discharge to the... [more]
18. LAPSE:2024.1640
Forces Shaping the Future of Design and Design Education
August 16, 2024 (v2)
Subject: Education
Keywords: Carbon Dioxide Capture, Hydrogen, Parameter Optimization, Process Design, Process Electrification, Process Synthesis, Structural Optimization
All ABET-accredited engineering programs mandate a culminating major design experience based on knowledge and skills acquired in earlier course work and incorporating realistic appropriate engineering standards and multiple realistic constraints. Some chemical companies organize their Manufacturing Innovation Process into a sequence of stages which typically include Need Identification, Product Design, Basic and Detailed Chemistry, Process Design, Equipment Design, Plant Design, Detailed Engineering and Vendor Specifications, Component Acquisition, Plant Construction Planning and Execution, Operating Procedure Development, Plant Commissioning and Start-up, and Production Planning, Scheduling, and Operation. Each of these stages involve the solution of many "design" problems that could be the subject of the culminating undergraduate chemical engineering design experience... (ABSTRACT ABBREVIATED)
19. LAPSE:2024.1630
Jacobian-based Model Diagnostics and Application to Equation Oriented Modeling of a Carbon Capture System
August 16, 2024 (v2)
Subject: Modelling and Simulations
Equation-oriented (EO) modeling has the potential to enable the effective design and optimization of the operation of advanced energy systems. However, advanced modeling of energy systems results in a large number of variables and non-linear equations, and it can be difficult to search through these to identify the culprit(s) responsible for convergence issues. The Institute for the Design of Advanced Energy Systems Integrated Platform (IDAES-IP) contains a tool to identify poorly scaled constraints and variables by searching for rows and columns of the Jacobian matrix with small L2-norms so they can be rescaled. A further singular value decomposition can be performed to identify degenerate sets of equations and remaining scaling issues. This work presents an EO model of a flowsheet developed for post-combustion carbon capture using a monoethanolamine (MEA) solvent system as a case study. The IDAES diagnostics tools were successfully applied to this flowsheet to identify problems to im... [more]
20. LAPSE:2024.1588
The design and operational space of syngas production via integrated direct air capture with gaseous CO2 electrolysis
August 16, 2024 (v2)
Subject: Modelling and Simulations
Keywords: Aspen Plus, Carbon Dioxide Capture, Modelling and Simulations, Syngas, Technoeconomic Analysis
The overarching goal of limiting the increase in global temperature to = 2.0° C likely requires both decarbonization and defossilization efforts. Direct air capture (DAC) and CO2 electrolysis stand out as promising technologies for capturing and utilizing atmospheric CO2. In this effort, we explore the details of designing and operating an integrated DAC-electrolysis process by examining some key parameters for economic feasibility. We evaluate the gross profit and net income to find the most appropriate capacity factor, average electricity price, syngas sale price, and CO2 taxes. Additionally, we study an optimistic scenario of CO2 electrolysis and perform a sensitivity analysis of the CO2 capture price to elucidate the impact of design decisions on the economic feasibility. Our findings underscore the necessity of design improvements of the CO2 electrolysis and DAC processes to achieve reasonable capacity factor and average electricity price limits. Notably, CO2 taxes and tax credits... [more]
21. LAPSE:2024.1531
Optimal Design of Intensified Towers for CO2 Capture with Internal, Printed Heat Exchangers
August 15, 2024 (v2)
Subject: Process Design
Solvent-based carbon capture processes typically suffer from the temperature rise of the solvent due to the heat of absorption of CO2. This increased temperature is not thermodynamically favorable and results in a significant reduction in performance in the absorber column. As opposed to interstage coolers, which only remove, cool, and return the solvent at discrete locations in the column, internal coolers that are integrated with the packing can cool the process inline, which can result in improved efficiency. This work presents the modeling of these internal coolers within an existing generic, equation-oriented absorber column model that can cool the process while allowing for simultaneous mass transfer. Optimization of this model is also performed, which is capable of optimally choosing the best locations to place these devices, such that heat removal and mass transfer area are balanced. Results of the optimization have shown that optimally placed cooling elements result in a signi... [more]
22. LAPSE:2024.1522
Simultaneous Optimization of Design and Operating Conditions for RPB-based CO2 Capture Process
August 15, 2024 (v2)
Subject: Process Design
Keywords: Carbon Dioxide Capture, Modelling and Simulations, Process Design, Process Intensification, Technoeconomic Analysis
Although global efforts for CO2 capture are underway, large-scale CO2 capture projects still face economic risks and technical challenges. The Rotating Packed Bed (RPB) provides an alternative solution by mitigating location constraints and enabling a gradual increase in the scale of CO2 capture through compact modular sizes. However, the main challenge in RPB-based CO2 capture processes lies in the limited experience with implementing industrial-scale RPB processes. The intricate relationship between RPB unit design, operating conditions, and process performance further complicates the process-level analysis for scale-up. To address these challenges, we propose an optimization-based process design for RPB-based CO2 capture. Leveraging rigorous process modeling and simulation, we aim to make simultaneous decisions on RPB unit design and operating conditions. Ultimately, our goal is to develop a cost-effective and optimal RPB-based CO2 capture process, supported by comprehensive cost ev... [more]
23. LAPSE:2024.1520
Advances in Process Synthesis: New Robust Formulations
August 15, 2024 (v2)
Subject: Optimization
We present new modifications to superstructure optimization paradigms to i) enable their robust solution and ii) extend their applicability. Superstructure optimization of chemical process flowsheets on the basis of rigorous and detailed models of the various unit operations, such as in the state operator network (SON) paradigm, is prone to non-convergence. A key challenge in this optimization-based approach is that when process units are deselected from a superstructure flowsheet, the constraints that represent the deselected process unit can be numerically singular (e.g., divide by zero, logarithm of zero and rank-deficient Jacobian). In this paper, we build upon the recently-proposed modified state operator network (MSON) that systematically eliminates singularities due to unit deselection and is equally applicable to the context of both simulation-based and equation-oriented optimization. A key drawback of the MSON is that it is only applicable to the design of isobaric flowsheets... [more]
24. LAPSE:2024.1268
A Coupling Calculation Method of Desorption Energy Distribution Applied to CO2 Capture by Chemical Absorption
June 21, 2024 (v1)
Subject: Energy Systems
Keywords: Carbon Dioxide Capture, chemical absorption method, desorption energy distribution, regeneration energy consumption
The pursuit of low-energy-consumption CO2 capture technology has promoted the renewal and iteration of absorbents for chemical absorption. In order to evaluate the regeneration energy consumption of absorbents and obtain the distribution of energy consumption, a coupling method combining rigorous energy balance and simple estimation is proposed in this study. The data regarding energy balance and material balance from process simulation are transformed into the model parameters required in the simple estimation model. Regenerative energy consumption and distribution are determined by the empirical estimation formula. Two CO2 capture processes of an MEA aqueous solution and MEA−n-propanol aqueous solution (phase-change absorbent) were used to verify the feasibility and applicability of the coupling method. The effects of n-propanol concentration, CO2 loading in the lean solution, and temperature on energy consumption were discussed. The results show that the energy consumption of 30 wt%... [more]
25. LAPSE:2024.0708
Recycling PVC Waste into CO2 Adsorbents: Optimizing Pyrolysis Valorization with Neuro-Fuzzy Models
June 6, 2024 (v1)
Subject: Energy Systems
Keywords: activated carbon, Carbon Dioxide Capture, neuro-fuzzy model, plastic waste, PVC
Nowadays, the environmental challenges associated with plastics are becoming increasingly prominent, making the exploitation of alternatives to landfill disposal a pressing concern. Particularly, polyvinyl chloride (PVC), characterized by its high chlorine content, poses a major environmental risk during degradation. Furthermore, PVC recycling and recovery present considerable challenges. This study aims to optimize the PVC pyrolysis valorization process to produce effective adsorbents for removing contaminants from gaseous effluents, especially CO2. For this purpose, PVC waste was pyrolyzed under varied conditions, and the resulting solid fraction was subjected to a series of chemical and physical activations by means of hydroxides (NaOH and KOH) and nitrogen. Characterization of the PVC-based activated carbons was carried out using surface morphology (SEM), N2 adsorption/desorption, elemental analysis, and FTIR, and their capacity to capture CO2 was assessed. Finally, neuro-fuzzy mod... [more]



