Browse
Keywords
Records with Keyword: Distillation
Models of Chemical recycling of plastic waste via production of ethylene from gasification syngas
August 23, 2024 (v1)
Subject: Modelling and Simulations
Keywords: Carbon Capture, chemical recycling, DGA, Distillation, methanation, oxidative coupling of methane
Herein, the Aspen models to the paper "Chemical recycling of plastic waste via production of ethylene from gasification syngas" are published. The model starts at syngas, as gasification was not modeled in Aspen Plus. Syngas is treated and fed into a methanation reactor. Ethylene is then produced via oxidative coupling of methane. The fractionation involves cryogenic distillation as well as CO2 capture. Latter one was modeled in a separate file.
Environmental Impact of Simulated Moving Bed (SMB) on the Recovery of 2,3-Butanediol on an Integrated Biorefinery
August 16, 2024 (v2)
Subject: Environment
2,3 butanediol (BDO) has garnered recent interest due to the high titer concentrations that can be obtained through biochemical routes and its potential for efficient conversion into long-chain hydrocarbons. BDO separation, however, is challenging given its low volatility and high affinity towards water. In this study, two BDO separation pathways were compared, single distillation and combined simulated moving bed (SMB) adsorption with distillation. The separations were incorporated into a 2018 biorefinery design developed by the National Renewable Energy Laboratory (NREL) to produce renewable fuels from corn stover, with BDO as an intermediate and adipic acid as the co-product. The comparison was performed on the basis of sustainability, using lifecycle greenhouse gas (GHG) emissions as the metric. It was found that using a single distillation column gives GHG emissions of 48 gCO2e/MJ for the renewable fuel. This is lower than 93 gCO2e/MJ for petroleum fuel but is higher compared to t... [more]
An MINLP Formulation for Global Optimization of Heat Integration-Heat Pump Assisted Distillations
August 16, 2024 (v2)
Subject: Optimization
Thermal separation processes, such as distillation, play a pivotal role in the chemical and petrochemical sectors, constituting a substantial portion of the industrial energy consumption. Consequently, owing to their huge application scales, these processes contribute significantly to greenhouse gas (GHG) emissions. Decarbonizing distillation units could mitigate carbon emissions substantially. Heat Pumps (HP), that recycle lower quality heat from the condenser to the reboiler by electric work present a unique opportunity to electrify distillation systems. In this research we try to answer the following question in the context of multi-component distillation Do HPs actually reduce the effective fuel consumption or just merely shift the fuel demand from chemical industry to the power plant? If they do, what strategies consume minimum energy? To address these inquiries, we construct various simplified surrogate and shortcut models designed to effectively encapsulate the fundamental phy... [more]
Learning Hybrid Extraction and Distillation using Phenomena-based String Representation
August 16, 2024 (v2)
Subject: Process Design
We present a string representation for hybrid extraction and distillation using symbols representing phenomena building blocks. Unlike the conventional equipment-based string representation, the proposed representation captures the design details of liquid-liquid extraction and distillation. We generate a set of samples through the procedure of input parameter sampling and superstructure optimization that minimizes separation cost. We convert these generated samples into a set of string representations based on pre-defined rules. We use these string representations as descriptors and connect them with conditional variational encoder. The trained conditional variational encoder shows good prediction accuracy. We further use the trained conditional variational encoder to screen designs of hybrid extraction and distillation with desired cost investment.
Optimal Process Synthesis Implementing Phenomena-based Building Blocks and Structural Screening
August 15, 2024 (v2)
Subject: Process Design
Superstructure optimization for process synthesis is a challenging endeavour typically leading to large scale MINLP formulations. By the combination of phenomena-based building blocks, accurate thermodynamics, and structural screening we obtain a new framework for optimal process synthesis, which overcomes prior limitations regarding solution by deterministic MINLP solvers in combination with accurate thermodynamics. This is facilitated by MOSAICmodelings generic formulation of models in MathML / XML and subsequent decomposition and code export to GAMS and C++. A branch & bound algorithm is implemented to solve the overall MINLP problem, wherein the structural screening penalizes instances, which are deemed nonsensical and should not be further pursued. The general capabilities of this approach are shown for the distillation-based separation of a ternary system.
Graph-Based Representations and Applications to Process Simulation
August 15, 2024 (v2)
Subject: Modelling and Simulations
Keywords: Distillation, Flowsheet Convergence, Graph-Theory, Liquid Extraction, Process simulation
Rapid and robust convergence of a process flowsheet is critical to enable large-scale simulations that address core scientific questions related to process design, optimization, and sustainability. However, due to the highly coupled and nonlinear nature of chemical processes, efficiently solving a flowsheet remains a challenge. In this work, we show that graph representations of the underlying physical phenomena in unit operations may help identify potential avenues to systematically reformulate the network of equations and enable more robust topology-based convergence of flowsheets. To this end, we developed graph abstractions of the governing equations of vapor-liquid and liquid-liquid equilibrium separation equipment. These graph abstractions consist of a mesh of interconnected variable nodes and equation nodes that are systematically generated through PhenomeNode, a new open-source library in Python developed in this study. We show that partitioning the graph into separate mass, en... [more]
The Material Balance of Complex Separation Flowsheets
June 6, 2024 (v1)
Subject: Materials
Keywords: azeotrope, Distillation, liquid–liquid equilibrium, material balance, separation flowsheet
The paper shows the expediency of supplementing the balance simplex method by calculating the number of free variables of separation flowsheets containing recycle flows. The need to determine and set the free variables that provide lower energy consumption when calculating the material balance of flowsheets with recycling is justified. The problem of material balance multivariance is illustrated, and ways to solve it are shown with the example of separation flowsheets for two ternary mixtures: n-butanol + water + toluene and n-butanol + butyl acetate + water. Separation flowsheets containing three distillation columns and a liquid−liquid separator are proposed for both systems. The dependence of the recycle flow values and the energy consumption of distillation columns and separation flowsheets on the selection and setting of values of free variables in solving the balance problem is shown. The dependence of energy consumption on the composition of the original mixture is studied for a... [more]
Modelling the Effect of Water Removal by Reverse Osmosis on the Distillation of Mixtures of Short-Chain Organic Acids from Anaerobic Fermentation
September 21, 2023 (v1)
Subject: Modelling and Simulations
Keywords: anaerobic fermentation, Distillation, reverse osmosis, short-chain organic acids
Anaerobic fermentation (AF) to produce sustainable short-chain organic acids (SCOAs) has found no commercial application so far. This is due to several limitations, including the high energy consumption of the SCOAs’ separation from water by distillation. This study used AspenPlus simulations to investigate the benefits of reverse osmosis (RO) to remove water and concentrate the SCOAs from AF before their separation by distillation. The effect of RO on distillation reflux ratio, heat energy requirements, column diameter and equipment costs was simulated for the processing of model SCOA-containing streams, representing AF effluents. A total of 90 simulations were carried out, investigating three different SCOA compositions, corresponding to different ratios of lactic, acetic and propionic acids, three different concentrations of the total SCOAs (10, 50, 100 g/kg in the stream entering RO) and different extents of water removal by RO. RO brought a reduction in the distillation reboilers’... [more]
Production of Fuel-Like Fractions by Fractional Distillation of Bio-Oil from Açaí (Euterpe oleracea Mart.) Seeds Pyrolysis
April 21, 2023 (v1)
Subject: Energy Systems
Keywords: Açaí, bio-oil, Distillation, Gasoline, kerosene-like fuel, light kerosene, pyrolysis, residual seeds
This work investigates the effect of production scales (laboratory, bench, and pilot) by pyrolysis of Açaí (Euterpe oleracea Mart.) seeds at 450 °C and 1.0 atmosphere, on the yields of reaction products and acid value of bio-oils. The experiments were carried out in batch mode using a laboratory scale reactor of 143 mL, a bench scale reactor of 1.5 L, and a pilot scale reactor of 143 L (≈1:10:1000). The bio-oil was obtained in pilot scale, fractionated by distillation to produce biofuel-like fractions. The distillation of bio-oil was carried out in a laboratory column. The physical-chemistry properties (density, kinematic viscosity, acid value, and refractive index) of bio-oils and distillation fractions were determined. The qualitative analysis was determined by FT-IR and the chemical composition by GC-MS. The pyrolysis showed bio-oil yields from 4.37 to 13.09 (wt.%), decreasing with reactor volume. The acid value of bio-oils varied from 68.31 to 70.26 mg KOH/g. The distillation of bi... [more]
10. LAPSE:2023.31787
Experimental Validation of the Thermal Processes Modeling in a Solar Still
April 19, 2023 (v1)
Subject: Modelling and Simulations
Keywords: desalination, Distillation, mathematical modeling, solar still
Passive solar distillation is cheap and energy-efficient technology but its main disadvantage is low productivity. Thus, there are many attempts to improve solar stills’ productivity, and one of them is changing the mass of the water. This paper presents the results of validation of the thermal processes modeling in a solar still (SS). In order to validate the model, the experimental studies were conducted in a laboratory to ensure uniform climatic conditions. The studies were carried out for 10 kg, 15 kg, and 20 kg of water under three different solar irradiance conditions. The results show that 10 kg and 20 kg of water ensure the highest and the lowest daily productivity, respectively, independently of solar irradiance. When the water mass is 10 kg, the solar still’s productivity is 800 mL/m2/day, 3732 mL/m2/day, and 9392 mL/m2/day for low, medium, and high solar irradiance, respectively. Additionally, it is found that reducing the water mass from 20 kg to 10 kg can improve solar sti... [more]
11. LAPSE:2023.22796
Investigation of the Process of Simple Distillation in Irrigated Pipe Elements
March 24, 2023 (v1)
Subject: Process Design
Keywords: Distillation, evaporator, mass streams, mass transfer, non-equimolarity, velocity profiles
In modern chemical and oil refining complexes, separation processes are among the most popular and energy-intensive. Installations for their implementation should be equipped with nodes for creating vapor (evaporators) and liquid (deflegmators) irrigation. Evaporators of any type (film, thermosiphon, gas lift, cubic) belong to this class of devices. For example, in cubic evaporators, the gas flow is completely formed from flux bubbles that originate on the heat-conducting surface and float in the volume of the cubic liquid located in the apparatus. Due to the accompanying mass exchange, the bubbles are enriched with volatile components during ascent and noticeably increase in volume, and the growth of the bubble is determined, among other things, by the total flow. At the same time, in real bubbling-type equipment, the total mass transfer surface exceeds the cross-section of the device itself by more than two orders of magnitude. Thus, according to, the ratio of the internal cross-sect... [more]
12. LAPSE:2023.16442
Process Analysis of PMMA-Based Dental Resins Residues Depolymerization: Optimization of Reaction Time and Temperature
March 3, 2023 (v1)
Subject: Optimization
Keywords: depolymerization, Distillation, plastics wastes, PMMA, pyrolysis, recovery of methyl methacrylate
This work aims to optimize the recovery of methyl methacrylate (MMA) by depolymerization of polymethyl methacrylate (PMMA) dental resins fragments/residues. In order to pilot the experiments at technical scale, the PMMA dental resins scraps were submitted by thermogravimetric analysis (TG/DTG/DTA). The experiments were conducted at 345, 405, and 420 °C, atmospheric pressure, using a pilot scale reactor of 143 L. The liquid phase products obtained at 420 °C, atmospheric pressure, were subjected to fractional distillation using a pilot scale column at 105 °C. The physicochemical properties (density, kinematic viscosity, and refractive index) of reaction liquid products, obtained at 345 °C, atmospheric pressure, were determined experimentally. The compositional analysis of reaction liquid products at 345 °C, 30, 40, 50, 60, 70, 80, and 110 min, at 405 °C, 50, 70, and 130 min, and at 420 °C, 40, 50, 80, 100, 110, and 130 min were determined by GC-MS. The morphology of PMMA dental resins fr... [more]
13. LAPSE:2023.11498
Recovery of Rare Earth Elements from NdFeB Magnets by Chlorination and Distillation
February 27, 2023 (v1)
Subject: Materials
Keywords: chlorination, Distillation, NdFeB magnets, Rare Earth Chlorides, Rare Earth Elements (REEs), recycling
A sustainable separation concept for large-scale recycling of NdFeB magnets under atmospheric pressure was developed by utilizing a combination of two separation concepts known from the literature: (I) selective pre-separation by in situ chlorination and evaporation of ground oxidized NdFeB material and (II) subsequent distillation for high-purity recovery of all recyclable chlorinated material components, especially its Rare Earth Elements (REEs). Theoretically, simplified estimations of the time conversion curves at 1173 K, 1273 K, and 2000 K of a single particle resulted in the idea of realizing chlorination in some kind of combustion chamber, fluidized bed, or continuous combustion chamber. After chlorination, all non-volatile components, such as REE chlorides, are condensed out of the vapor phase in a single-stage phase separator. For subsequent fine separation by distillation (1292−1982 K for Rare Earth Chlorides and 418−867 K at 2500 kPa for boron and zirconium chloride recovery... [more]
14. LAPSE:2023.5570
Dividing-Wall Column Design: Analysis of Methodologies Tailored to Process Simulators
February 23, 2023 (v1)
Subject: Optimization
Dividing-wall columns (DWCs) are intensified processes that have attracted industrial and academic attention due to the reduction in operating and installation costs compared to traditional distillation systems. Several methodologies are available for the design of DWCs. Most of them consist of three parts: an analysis of operating variables; an analysis of the structural design (topology); and an optimization of the resulting preliminary design. This paper aims to study three widely used design methodologies reported in the literature for DWCs, i.e., Triantafyllou and Smith (T&S), minimum vapor (Vmin), and Sotudeh and Shahraki (S&S) methods, along with their implementation on process simulators. A proposed modification to the S&S methodology is also presented. A comparison of the methods is carried out and rated against designs with minimum total annual costs. The analysis considers the effect of different structural design variables to initialize the design procedure with each method... [more]
15. LAPSE:2023.3458
Experimental and Theoretical Investigation of Single-Slope Passive Solar Still with Phase-Change Materials
February 22, 2023 (v1)
Subject: Materials
Keywords: desalination, Distillation, paraffin wax, phase-change materials, solar still
Many attempts are made worldwide to create cheap, efficient, and eco-friendly water desalination systems. Passive solar stills (SS) are considered to be such. This paper presents the results of the experimental and theoretical investigation of the effects of using phase-change materials (PCM) on the performance of SS. The experiments were conducted for two paraffin waxes, as PCM and 1.0, 2.5, and 5.0 kg of PCM were used. The results of the experimental studies were used to validate a mathematical model, which was based on the energy balance ordinary differential equations. The equations were solved numerically since the approximate solutions obtained numerically are sufficient and relatively simple as compared to the exact analytical solutions. A theoretical analysis was then carried out and a novel and detailed dependence on the water evaporation rate as a function of water temperature and the difference between water and cover temperature was determined. It was also found that the pr... [more]
16. LAPSE:2023.0091
A Simultaneous Design and Optimization Framework for the Reaction and Distillation Sections of Methanol to Olefins Process
February 17, 2023 (v1)
Subject: Process Design
The reaction and separation sections are the keys to the methanol-to-olefins (MTO) chemical processes, and they should be optimized to reduce the cost of production. This work develops a framework for the simultaneous design and optimization of the reaction and distillation sections. An optimization model with shortcut and rigorous methods combined is established for distillation columns to improve accuracy and efficiency. With the auxiliary devices and the selection of utilities considered, the reaction and distillation sections are integrated to maximize profits. The genetic algorithm targets the optimal parameters, including the catalyst’s coke content and reaction temperature, each column’s operating pressure, and the allocation of utilities and auxiliary devices. For the studied MTO process, the optimal reaction temperature and catalyst’s coke content were identified to be 496 °C and 7.8%, respectively. The maximum profit is 15.3% greater than that identified with only the separat... [more]
17. LAPSE:2020.0196
A Hybrid Inverse Problem Approach to Model-Based Fault Diagnosis of a Distillation Column
February 12, 2020 (v1)
Subject: Process Monitoring
Keywords: Distillation, fault diagnosis, inverse problem, parameter estimation
Early-stage fault detection and diagnosis of distillation has been considered an essential technique in the chemical industry. In this paper, fault diagnosis of a distillation column is formulated as an inverse problem. The nonlinear least squares algorithm is used to evaluate fault parameters embedded in a nonlinear dynamic model of distillation once abnormal symptoms are detected. A partial least squares regression model is built based on fault parameter history to explicitly predict the development of fault parameters. With the stripper of Tennessee Eastman process as example, this novel approach is tested for step- and random-type faults and several factors affecting its efficiency are discussed. The application result shows that the hybrid inverse problem approach gives the correct change of fault parameter at a speed far faster than the base approach with only a nonlinear model.
18. LAPSE:2020.0157
A Hybrid Framework for Simultaneous Process and Solvent Optimization of Continuous Anti-Solvent Crystallization with Distillation for Solvent Recycling
February 3, 2020 (v1)
Subject: Process Design
Keywords: crystallization, Distillation, PC-SAFT, process design, solvent design
Anti-solvent crystallization is frequently applied in pharmaceutical processes for the separation and purification of intermediate compounds and active ingredients. The selection of optimal solvent types is important to improve the economic performance and sustainability of the process, but is challenged by the discrete nature and large number of possible solvent combinations and the inherent relations between solvent selection and optimal process design. A computational framework is presented for the simultaneous solvent selection and optimization for a continuous process involving crystallization and distillation for recycling of the anti-solvent. The method is based on the perturbed-chain statistical associated fluid theory (PC-SAFT) equation of state to predict relevant thermodynamic properties of mixtures within the process. Alternative process configurations were represented by a superstructure. Due to the high nonlinearity of the thermodynamic models and rigorous models for dist... [more]
19. LAPSE:2019.1078
Optimal Design of a Distillation System for the Flexible Polygeneration of Dimethyl Ether and Methanol Under Uncertainty
October 22, 2019 (v2)
Subject: Process Design
Keywords: Dimethyl Ether, Distillation, Flexible polygeneration, Methanol, Optimization, Polygeneration, Process Design Under Uncertainty
This presentation concerns the promising new area of flexible polygeneration, a chemical process design concept in which a chemical plant is able to change its product outputs throughout its lifetime in response to changing market conditions, business objectives, or other external factors. In this talk we present a new flexible polygeneration process system that can switch between dimethyl ether (DME) or methanol production, depending on need. Classic flexible polygeneration systems typically utilize separate process trains for each product, in which whole process trains are turned on or off (or up or down) depending on the current product. However, our proposed process combines the two process trains into one, in which most of the process equipment is always used during either mode of production, but with different operating conditions. In this work, we show how this significantly reduces capital expenditure, reduces the plant footprint, and ultimately is more economical than a tradit... [more]
20. LAPSE:2019.0989
Improvement of 1,3-Butadiene Separation in 2,3-Butanediol Dehydration Using Extractive Distillation
September 5, 2019 (v1)
Subject: Process Design
Keywords: 1-butene, 1,3-butadiene, 2,3-butanediol dehydration, Distillation, economic feasibility, extractive distillation
This study was performed to investigate the extractive distillation for 1,3-butadiene (1,3-BD) purification as a part of the 2,3-butanediol (2,3-BDO) dehydration process. The separation of 1,3-BD from 1-butene produced as a 2,3-BDO dehydration by-product while using distillation is complicated due to the similar volatilities of the two compounds. Thus, an extractive distillation system is proposed for the effective recovery of 1,3-BD, and is compared with a conventional distillation system in terms of its performance and economic feasibility. A higher 1,3-BD recovery rate was achieved while using the proposed system and the relative profitabilities of both separation systems were analyzed according to the market price of 1,3-BD, which is a decisive variable for economic feasibility.
21. LAPSE:2018.0128
The Optimal Design of a Distillation System for the Flexible Polygeneration of Dimethyl Ether and Methanol Under Uncertainty
June 12, 2018 (v1)
Subject: Process Design
Keywords: Design Under Uncertainty, Dimethyl Ether, Distillation, Methanol, Optimization, Polygeneration
Two process designs for the separation section of a flexible dimethyl ether and methanol polygeneration plant are presented, as well as an optimization method which can determine the optimal design under market uncertainty quickly and to global optimality without loss of model fidelity. The polygeneration plant produces a product mixture that is either mostly dimethyl ether or mostly methanol depending on market conditions by using a classic two-stage dimethyl ether production catalytic reaction route in which the second stage is bypassed when the market demand is such that methanol production is more favorable than dimethyl ether. The downstream distillation sequence is designed to purify the products to desired specifications despite the wide variability in feed condition that corresponds to the upstream reaction system operating either in DME-rich or methanol-rich mode. Because the optimal design depends on uncertain market conditions (realized as the percentage of the time in which... [more]