Browse
Subjects
Records with Subject: Modelling and Simulations
Showing records 1 to 25 of 654. [First] Page: 1 2 3 4 5 Last
Cogeneration energy managment center with short-term thermal storage
Nina Monteiro
November 16, 2022 (v1)
Keywords: Cogeneration, District Heating, TRNSYS
This file TRNSYS simulation studio file represents a cogeneration energy management center. It uses a mix of built-in and and in-house equipment models, as well as external data files. The external files used are in the context of Canada, province of Ontario, but they can easily be swapped by others.
The system is a closed loop that uses three temperature water headers to connect the following equipment: Cogeneration internal combustion engine, hot water tank, natural gas boiler, and heat exchanger that can be connected to an external, heat delivery loop such as the ones used in district heating.
A Quality Integrated Fuzzy Inference System for the Reliability Estimating of Fluorochemical Engineering Processes
Feng Xue, Xintong Li, Kun Zhou, Xiaoxia Ge, Weiping Deng, Xu Chen, Kai Song
November 7, 2022 (v1)
Keywords: fluorochemical engineering process, fuzzy inference system, process reliability estimating, prognostics and health management, quality prediction
Hypertoxic materials make it critical to ensure the safety of the fluorochemical engineering processes. This mainly depends on the over maintenance or the manual operations due to the lack of precise models and mechanism knowledge. To quantify the deviations of the operating variables and the product quality from their target values at the same time and to overcome the measurement delay of the product quality, a novel quality integrated fuzzy inference system (QFIS) was proposed to estimate the reliability of the operation status as well as the product quality to enhance the performance of the safety monitoring system. To this end, a novel quality-weighted multivariate inverted normal loss function was proposed to quantify the deviation of the product quality from the target value to overcome the measurement delay. Vital safety process variables were identified according to the expert knowledge. Afterward, the quality loss and the vital variables were inputs to an elaborate fuzzy infer... [more]
Effect of the Coupled Pitch−Yaw Motion on the Unsteady Aerodynamic Performance and Structural Response of a Floating Offshore Wind Turbine
Ziwen Chen, Xiaodong Wang, Shun Kang
November 7, 2022 (v1)
Keywords: aerodynamic performance, FOWT, platform pitching, platform yawing, structural response
The floating offshore wind turbines (FOWTs) have many more advantages than the onshore wind turbines, but they also have more complicated aerodynamic characteristics due to complex platform motions. The research objective of this paper is to investigate unsteady aerodynamic characteristics of a FOWT under the pitch, yaw, and coupled pitch−yaw platform motions using the computational fluid dynamics (CFD) method in the Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations. The pitch, yaw, and coupled pitch−yaw motions are studied separately to analyze the platform motions’ effects on the rotor blade. The accuracy of the numerical simulation method is verified, and the overall performances, including power and thrust, are discussed. In addition, the comparison of total aerodynamic performance, force coefficients at different spans and structural dynamic response is provided. The numerical simulation results show that the platform pitching is the main influencing factor of power flu... [more]
A Comparative Study on the Modelling of Soybean Particles Based on the Discrete Element Method
Dongxu Yan, Jianqun Yu, Liusuo Liang, Yang Wang, Yajun Yu, Long Zhou, Kai Sun, Ping Liang
November 6, 2022 (v1)
Keywords: discrete element method, ellipsoidal equation model, multi-ball model, multiple contacts, particle modelling, soybean particles
To solve the poor universality in the existing modelling approaches of soybean particles, we proposed a soybean particle modelling approach by combining five, nine, and 13 balls. The soybean seeds from three varieties (Suinong42, Jidou17, and Zhongdou39 with a sphericity of 94.78%, 86.86%, and 80.6%, respectively) are chosen as the study objects. By the comparisons between the simulation results and the test results in the “self-flow screening” and “piling angle” tests, it is concluded that the soybean particle modelling approach we presented in this paper is a universal modelling approach appropriate for soybean particles with different sphericities. The five-ball model is appropriate for the soybean particles with high sphericity, and the nine- or 13-ball models are applicable to those with low sphericity. The soybean particle modelling approach we presented is also compared with the ellipsoidal equation modelling approach for soybean particles and with the modelling approaches prese... [more]
Coarse-Grain DEM Modelling in Fluidized Bed Simulation: A Review
Alberto Di Renzo, Erasmo S. Napolitano, Francesco P. Di Maio
November 6, 2022 (v1)
Keywords: CFD-DEM, coarse graining, discrete element method, fluidization, multiphase flow, numerical modelling
In the last decade, a few of the early attempts to bring CFD-DEM of fluidized beds beyond the limits of small, lab-scale units to larger scale systems have become popular. The simulation capabilities of the Discrete Element Method in multiphase flow and fluidized beds have largely benefitted by the improvements offered by coarse graining approaches. In fact, the number of real particles that can be simulated increases to the point that pilot-scale and some industrially relevant systems become approachable. Methodologically, coarse graining procedures have been introduced by various groups, resting on different physical backgrounds. The present review collects the most relevant contributions, critically proposing them within a unique, consistent framework for the derivations and nomenclature. Scaling for the contact forces, with the linear and Hertz-based approaches, for the hydrodynamic and cohesive forces is illustrated and discussed. The orders of magnitude computational savings are... [more]
Numerical Analysis of a Flow over Spheres Embedded on a Flat Wall
Ewa Szymanek, Artur Tyliszczak
November 6, 2022 (v1)
Keywords: drag and separation control, flow control by wall shaping, flow over a rough wall, immersed boundary method, near-wall mixing intensification
This paper presents the results of numerical simulations of flow in a periodic channel with the walls covered in the central part by spherical elements that have the same overall surface areas but different radii. Two distributions of the sphere are considered, with the subsequent rows placed one after another or shifted. The computations are performed using the high-order code, whereas the solid elements are modelled with the help of the immersed boundary method. For selected cases, the results are validated by comparison with the solutions obtained using the ANSYS Fluent code on a very dense body-fitted mesh. It was found that the increase in the sphere diameter slows down the flow, which is attributed to the larger blockage of the channel cross-section caused by larger spheres and the occurrence of intense mixing (recirculation) between the spheres. The velocity profiles in the vicinity of the sphere are largely dependent on sphere diameter and rise when it increases. It was found t... [more]
Hemoglobin Response Modeling under Erythropoietin Treatment: Physiological Model-Informed Machine Learning Method
Zhongyu Zhang, Zukui Li
October 21, 2022 (v1)
Keywords: Erythropoietin Therapy, Parameter Identification, Physics-Informed Neural Networks, Renal Anemia
Patients with renal anemia (RA) are usually treated with recombinant human erythropoietin (EPO) because of insufficient renal EPO secretion. The establishment of a good hemoglobin (Hgb) response model is a necessary condition for dose optimization design. The purpose of this paper is to apply physics-informed neural networks (PINN) to build the Hgb response model under EPO treatment. Neural network training is guided by physiological model to avoid overfitting problem. During the training process, the parameters of the physiological model can be estimated simultaneously. To handle differential equations with impulse inputs and time delays, we propose approximate analytical expressions for the pharmacokinetic (PK) model and weighted formulations for the pharmacology (PD) model, respectively. The improved PK/PD model was incorporated into PINN for training. Tests on simulated data show that the proposed method has good performance.
Numerical Simulation of the Aerosol Particle Motion in Granular Filters with Solid and Porous Granules
Olga V. Soloveva, Sergei A. Solovev, Ruzil R. Yafizov
October 31, 2022 (v1)
Keywords: Computational Fluid Dynamics, DEM, filter quality factor, granular filter, microporosity, particle deposition efficiency, pressure drop, spherical granules
In this work, a study was carried out to compare the filtering and hydrodynamic properties of granular filters with solid spherical granules and spherical granules with modifications in the form of micropores. We used the discrete element method (DEM) to construct the geometry of the filters. Models of granular filters with spherical granules with diameters of 3, 4, and 5 mm, and with porosity values of 0.439, 0.466, and 0.477, respectively, were created. The results of the numerical simulation are in good agreement with the experimental data of other authors. We created models of granular filters containing micropores with different porosity values (0.158−0.366) in order to study the micropores’ effect on the aerosol motion. The study showed that micropores contribute to a decrease in hydrodynamic resistance and an increase in particle deposition efficiency. There is also a maximum limiting value of the granule microporosity for a given aerosol particle diameter when a further increas... [more]
Development of a Hydropower Turbine Using Seawater from a Fish Farm
Md Rakibuzzaman, Sang-Ho Suh, Hyoung-Ho Kim, Youngtae Ryu, Kyung Yup Kim
October 31, 2022 (v1)
Keywords: Computational Fluid Dynamics, design factors, fish farm, optimum model, performance test, small hydropower, tubular turbine
Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decre... [more]
Protonation Dynamics in the K-Channel of Cytochrome c Oxidase Estimated from Molecular Dynamics Simulations
Vincent Stegmaier, Rene F. Gorriz, Petra Imhof
October 31, 2022 (v1)
Keywords: hydrogen-bonded network, proton transfer, replica exchange, sampling
Proton transfer reactions are one of the most fundamental processes in biochemistry. We present a simplistic approach for estimating proton transfer probabilities in a membrane protein, cytochrome c oxidase. We combine short molecular dynamics simulations at discrete protonation states with a Monte Carlo approach to exchange between those states. Requesting for a proton transfer the existence of a hydrogen-bonded connection between the two source and target residues of the exchange, restricts the acceptance of transfers to only those in which a proton-relay is possible. Together with an analysis of the hydrogen-bonded connectivity in one of the proton-conducting channels of cytochrome c oxidase, this approach gives insight into the protonation dynamics of the hydrogen-bonded networks. The connectivity and directionality of the networks are coupled to the conformation of an important protein residue in the channel, K362, rendering proton transfer in the entire channel feasible in only o... [more]
Analysis of the Heat Balance of a Metal Hydride Separator Used for the Separation of Hydrogen from Syngas
Tomáš Brestovič, Marián Lázár, Natália Jasminská, Jozef Živčák, Lukáš Tóth, Romana Dobáková, Filip Duda, Ľubomíra Kmeťová, Ľubomíra Bednárová
October 30, 2022 (v1)
Keywords: Energy, heat exchanger, modelling and simulation
The present article discusses the potential for hydrogen separation using a metal hydride separator, which facilitates the generation of hydrogen contained in syngas following the thermal recovery of wastes. The article provides a detailed description of the separator heat balance using analytical calculations and optimised calculations, and by applying numerical methods. The proposed concept of a separator intended for hydrogen separation from syngas offers a solution to a problem associated with the use of metal hydride alloy powders; in particular, their low thermal conductivity. In order to eliminate big temperature differences in the alloy, a heat transfer intensifier was implemented in the metal hydride alloy volume; the intensifier was made of metal and exhibited high thermal conductivity. For the purpose of comparing the thermal fields, the first stage comprised the creation of a numerical simulation of hydrogen absorption without the use of an intensifier. Subsequently, three... [more]
Prediction of Amines Thermal Degradation in CO2 Capture Process Using Intelligent Techniques
Abbas Azarpour, Sohrab Zendehboudi
October 19, 2022 (v1)
Keywords: Amines, Carbon Dioxide Capture, intelligent model, statistical analysis, thermal degradation
Mitigation of carbon emissions is an important step to achieve the climate change goals. Amine-based post-combustion CO2 capture (PCC) process is a promising technology, and many commercial projects have been developed based on different capture mechanisms governing in various carbon capture and storage (CCS) processes. The thermally regenerative amine-based PCC is a traditional technology, which consists of an absorber to capture CO2 from the flue gas and a desorber to strip CO2 from the CO2-rich. Although there have been substantial improvements in the industrial applications of amines technology, further developments are still required owing to significant energy requirement, high capital cost, and amine degradation. One of the most critical issues in the amine-based PCC process is the degradation of solvent, which occurs by the transformation of amines into other chemical components by thermal degradation and oxidative degradation. In the thermal degradation, the amines react with... [more]
Techno-Economic Analysis of a Hyaluronic Acid Production Process Utilizing Streptococcal Fermentation
Rafael G. Ferreira, Adriano R. Azzoni, Maria Helena Andrade Santana, Demetri Petrides
October 18, 2022 (v1)
Keywords: Fermentation, hyaluronic acid, process simulation, Streptococcus, Technoeconomic Analysis
Hyaluronic acid (HA) is a polysaccharide of alternating d-glucuronic acid and N-acetyl-d-glucosamine residues present in the extracellular matrix of connective, epithelial, and nervous tissues. Due to its singular hydrating, rheological and adhesive properties, HA has found numerous cosmetic and medical applications. However, techno-economic analyses of high value-added bioproducts such as HA are scarce in the literature. Here, we present a techno-economic analysis of a process for producing HA using Streptococcus zooepidemicus, simulated in SuperPro Designer. In the baseline scenario, HA is produced by batch fermentation, reaching 2.5 g/L after 24 h. It is then centrifuged, diafiltered, treated with activated carbon and precipitated with isopropanol. The product is suitable for topical formulations and its production cost was estimated as 1115 $/kg. A similar scenario, based on fed-batch culture and assuming a titer of 5.0 g/L, led to a lower cost of 946 $/kg. Moreover, in two additio... [more]
Large Eddy Simulation of Film Cooling Involving Compound Angle Holes: Comparative Study of LES and RANS
Seung Il Baek, Joon Ahn
October 12, 2022 (v1)
Keywords: adiabatic film cooling effectiveness, compound angle, film cooling, large eddy simulation (LES), reynolds averaged navier–stokes simulation (RANS)
A large eddy simulation (LES) was performed for film cooling in the gas turbine blade involving spanwise injection angles (orientation angles). For a streamwise coolant injection angle (inclination angle) of 35°, the effects of the orientation angle were compared considering a simple angle of 0° and 30°. Two ratios of the coolant to main flow mass flux (blowing ratio) of 0.5 and 1.0 were considered and the experimental conditions of Jung and Lee (2000) were adopted for the geometry and flow conditions. Moreover, a Reynolds averaged Navier−Stokes simulation (RANS) was performed to understand the characteristics of the turbulence models compared to those in the LES and experiments. In the RANS, three turbulence models were compared, namely, the realizable k-ε, k-ω shear stress transport, and Reynolds stress models. The temperature field and flow fields predicted through the RANS were similar to those obtained through the experiment and LES. Nevertheless, at a simple angle, the point at w... [more]
Effects of Flow Velocity on Transient Behaviour of Liquid CO2 Decompression during Pipeline Transportation
Chenghuan Xiao, Zhaijun Lu, Liguo Yan, Jiaqiang Wang, Shujian Yao
October 12, 2022 (v1)
Keywords: CCS, CO2 decompression, flow velocity, nonequilibrium phase transition, transient behaviour
Investigating the transient behaviour of liquid CO2 decompression is of great importance to ensure the safety of pipeline transportation in carbon capture and storage (CCS) technology. A computational fluid dynamics (CFD) decompression model based on the non-equilibrium phase transition and Span−Wagner equation of state (EoS) was developed to study the effects of actual flowing state within the pipeline on the transient behaviour of liquid CO2 decompression. Then, the CFD model was verified by comparing the simulated results to test data of a large-scale “shock tube” with an inner diameter of 146.36 mm. The results showed that the evaporation coefficient had a significant impact on the transition behaviour of CO2 decompression, while the condensation coefficient made no difference. When the evaporation coefficient was 15 s−1, the CFD-predicted results were in good agreement with the test results. Moreover, the effects of flow velocity on transient behaviour of liquid CO2 decompression... [more]
Simulation of Flexible Fibre Particle Interaction with a Single Cylinder
Naser Hamedi, Lars-Göran Westerberg
October 12, 2022 (v1)
Keywords: Computational Fluid Dynamics, fiber flexibility, fiber model, fiber suspension, particulate flow
In the present study, the flow of a fibre suspension in a channel containing a cylinder was numerically studied for a very low Reynolds number. Further, the model was validated against previous studies by observing the flexible fibres in the shear flow. The model was employed to simulate the rigid, semi-flexible, and fully flexible fibre particle in the flow past a single cylinder. Two different fibre lengths with various flexibilities were applied in the simulations, while the initial orientation angle to the flow direction was changed between 45° ≤ θ ≤ 75°. It was shown that the influence of the fibre orientation was more significant for the larger orientation angle. The results highlighted the influence of several factors affecting the fibre particle in the flow past the cylinder.
Eco-technoeconomic analyses of NG-powered SOFC/GT hybrid plants accounting for long-term degradation effects via pseudo-steady-state model simulations
Haoxiang Lai, Thomas Adams II
August 2, 2022 (v1)
Models and codes that were used in this work. Please read the simulation instruction.
Influence of Surface Waviness of Journal and Bearing Bush on the Static Characteristics of Hydrodynamic Bearing
Minghui Yang, Hong Lu, Xinbao Zhang, Meng Duan, Liu Bao, Bowen Wang, Wan Wu
January 24, 2022 (v1)
Keywords: finite difference method, hydrodynamic journal bearing, static characteristics, surface waviness
An investigation on the surface waviness of both the journal and the bearing bush and their impact on the static characteristics of the hydrodynamic journal bearing is presented in this paper. The finite difference method is introduced to solve a Reynolds equation and obtain the unknown pressure field. The static characteristics, including the load carrying capacity, attitude angle, end leakage flow rate and frictional coefficient are studied under different waviness parameters. The numerically simulated results indicate that the waviness of the bearing bush may deteriorate or enhance the bearing system, depending on the phase angle. The waviness of the journal causes periodic changes in bearing behavior, owing to the alteration in the phase angle. The profile of the journal and bearing surfaces near the attitude angle determines the performance of the bearing system.
Investigation on the Performance Enhancement and Emission Reduction of a Biodiesel Fueled Diesel Engine Based on an Improved Entire Diesel Engine Simulation Model
Weigang Yu, Zhiqing Zhang, Bo Liu
January 24, 2022 (v1)
Keywords: biodiesel fuel, comprehensive performance, diesel engine, fuel injection rate, fuel injection system
In order to improve the efficiency of the diesel engine and reduce emissions, an improved heat transfer model was developed in an AVL-BOOST environment which is a powerful and user-friendly software for engine steady-state and transient performance analysis. The improved heat transfer model considers the advantages of the Woschni1978 heat transfer model and Honhenberg heat transfer model. In addition, a five-component biodiesel skeletal mechanism containing 475 reactions and 134 species was developed to simulate the fuel spray process and combustion process since it contained methyl linolenate, methyl linoleate, methyl oleate, methyl stearate, and methyl palmitate, which are a majority component in most biodiesel. Finally, the propulsion and load characteristics of a diesel engine fueled with biodiesel fuel were investigated by the improved heat transfer model in term of power, brake specific fuel consumption (BSFC), soot and NOx emissions. Similarly, the effects of the fuel injection... [more]
Learn Aspen Plus in 24 Hours 2nd Edition Solution Files
Thomas A. Adams II
January 6, 2022 (v1)
Keywords: Aspen Plus, Education, Learn Aspen Plus in 24 Hours, Simulation
These Aspen Plus v12 simulations are the solution or demonstration files for the book Learn Aspen Plus in 24 Hours, 2nd Edition, by Thomas A. Adams II. They are given as-is with no warranty or guarantee of accuracy or correctness. They are for educational purposes only.

The files list contains a large .zip of all files, or otherwise you can download them independently.

Files correspond to these tutorials:

Tutorial 2 Physical Property Modelling - Selecting physical properties. Understanding the database.
Tutorial 3 Problem Solving Tools - Design Specs and Sensitivity Analyses
Tutorial 4 Heat Exchangers - HEATER, HEATX
Tutorial 5 Equilibrium-based Distillation Models - RadFrac (in equilibrium mode)
Tutorial 6 Advanced Problem Solving Tools - Utilities, GHG Emissions, Optimization
Tutorial 7 Chemical Reactor Models - RSTOIC, REQUIL, RYIELD, RGIBBS, RCSTR, RPFR
Tutorial 8 Rate-based Distillation Models - RadFrac (in rate-based mode)
Tutorial 9 Custom Models and External Con... [more]
Supplemental Data for “Process Design and Techno-Economic Analysis of Biomass Pyrolysis By-Product Utilization in the Ontario and Aichi Steel Industries”
Jamie Rose, Thomas A. Adams II
November 5, 2021 (v1)
This is supplemental data for a paper submitted to the PSE 2021+ conference. It includes values used to calculate emissions reductions and financial value of biomass pyrolysis by-product utilization.
Experimental and Numerical Analysis of the Mechanical Properties of a Pretreated Shape Memory Alloy Wire in a Self-Centering Steel Brace
Bo Zhang, Sizhi Zeng, Fenghua Tang, Shujun Hu, Qiang Zhou, Yigang Jia
October 14, 2021 (v1)
Keywords: energy dissipation capacity, initial strain, loading rate, shape memory alloy (SMA), strain amplitude
As a stimulus-sensitive material, the difference in composition, fabrication process, and influencing factors will have a great effect on the mechanical properties of a superelastic Ni-Ti shape memory alloy (SMA) wire, so the seismic performance of the self-centering steel brace with SMA wires may not be accurately obtained. In this paper, the cyclic tensile tests of a kind of SMA wire with a 1 mm diameter and special element composition were tested under multi-working conditions, which were pretreated by first tensioning to the 0.06 strain amplitude for 40 cycles, so the mechanical properties of the pretreated SMA wires can be simulated in detail. The accuracy of the numerical results with the improved model of Graesser’s theory was verified by a comparison to the experimental results. The experimental results show that the number of cycles has no significant effect on the mechanical properties of SMA wires after a certain number of cyclic tensile training. With the loading rate incre... [more]
Computational Fluid Dynamics Modeling of Rotating Annular VUV/UV Photoreactor for Water Treatment
Minghan Luo, Wenjie Xu, Xiaorong Kang, Keqiang Ding, Taeseop Jeong
October 14, 2021 (v1)
Keywords: Computational Fluid Dynamics, MB, photoreactor, VUV, water treatment
The ultraviolet photochemical degradation process is widely recognized as a low-cost, environmentally friendly, and sustainable technology for water treatment. This study integrated computational fluid dynamics (CFD) and a photoreactive kinetic model to investigate the effects of flow characteristics on the contaminant degradation performance of a rotating annular photoreactor with a vacuum-UV (VUV)/UV process performed in continuous flow mode. The results demonstrated that the introduced fluid remained in intensive rotational movement inside the reactor for a wide range of inflow rates, and the rotational movement was enhanced with increasing influent speed within the studied velocity range. The CFD modeling results were consistent with the experimental abatement of methylene blue (MB), although the model slightly overestimated MB degradation because it did not fully account for the consumption of OH radicals from byproducts generated in the MB decomposition processes. The OH radical... [more]
Snapse: A Visual Tool for Spiking Neural P Systems
Aleksei Dominic C. Fernandez, Reyster M. Fresco, Francis George C. Cabarle, Ren Tristan A. de la Cruz, Ivan Cedric H. Macababayao, Korsie J. Ballesteros, Henry N. Adorna
October 14, 2021 (v1)
Keywords: membrane computing, spiking neural P systems, visual simulator
Spiking neural P (SN P) systems are models of computation inspired by spiking neurons and part of the third generation of neuron models. SN P systems are equivalent to Turing machines and are able to solve computationally hard problems using a space-time trade-off. Research in SN P systems theory is especially active, more so in recent years as more efforts are directed towards their real-world applications. Usually, SN P systems are represented visually as a directed graph and simulated through mainly text-based simulations or tables. Thus, there is a need for tools that can simulate and create SN P Systems in a visual and easy-to-use manner. Snapse is such a tool which aims to hasten the speed and ease at which researchers may create and experiment with SN P systems. Furthermore, visual tools such as Snapse can help further bring SN P systems outside of theoretical computer science.
A Discrete Element Method Study of Solids Stress in Cylindrical Columns Using MFiX
Filippo Marchelli, Renzo Di Felice
October 11, 2021 (v1)
Keywords: Coulomb friction force, discrete element method, Janssen effect, solids pressure
Friction phenomena play a key role in discrete element method (DEM) modeling. To analyze this aspect, we employed the open-source program MFiX to perform DEM simulations of cylindrical vertical columns filled with solid particles. These are still associated with and described by the pioneering model by the German engineer H.A. Janssen. By adapting the program’s code, we were able to gather numerous insights on the stress distribution within the solids. The column was filled with different amounts of solids and, after the system had stabilized, we assessed the pressure in the vertical and radial directions and the distribution of the friction force for all particles. An analysis of the bottom pressure for varying particle loads allowed us to infer that the program can correctly predict the expected asymptotical behavior. After a detailed assessment of the behavior of a single system, we performed a sensitivity analysis taking into account several of the variables employed in the simulat... [more]
Showing records 1 to 25 of 654. [First] Page: 1 2 3 4 5 Last
[Show All Subjects]