Records with Keyword: Biomass
Combustion of Flax Shives, Beech Wood, Pure Woody Pseudo-Components and Their Chars: A Thermal and Kinetic Study
Nourelhouda Boukaous, Lokmane Abdelouahed, Mustapha Chikhi, Abdeslam-Hassen Meniai, Chetna Mohabeer, Taouk Bechara
September 21, 2018 (v1)
Keywords: Biomass, combustion, kinetic parameters, thermal characteristics, thermogravimetric analysis
Thermogravimetric analysis was employed to investigate the combustion characteristics of flax shives, beech wood, hemicellulose, cellulose, lignin, and their chars. The chars were prepared from raw materials in a fixed-bed reactor at 850 °C. In this study, the thermal behavior based on characteristic temperatures (ignition, maximum, and final temperatures), burnout time and maximum rate was investigated. The kinetic parameters for the combustion of different materials were determined based on the Coats-Redfern approach. The results of our study revealed that the combustion of pure pseudo-components behaved differently from that of biomass. Indeed, principal component analysis showed that the thermal behavior of both biomasses was generally similar to that of pure hemicellulose. However, pure cellulose and lignin showed different behaviors compared to flax shives, beech wood, and hemicellulose. Hemicellulose and cellulose chars had almost the same behaviors, while being different from b... [more]
The Influence of Char Preparation and Biomass Type on Char Steam Gasification Kinetics
Tilia Dahou, Françoise Defoort, Sébastien Thiéry, Maguelone Grateau, Matthieu Campargue, Simona Bennici, Mejdi Jeguirim, Capucine Dupont
September 21, 2018 (v1)
Keywords: Biomass, characteristic time analysis, kinetics, pyrolysis conditions, steam gasification, thermogravimetric analysis
A study was conducted to investigate the parameter that has influence on steam gasification kinetics between the biomass type and char preparation. Thermogravimetric analysis (TGA) was carried out on steam gasification of seven biomass samples as well as chars from three of these samples. Chars were prepared using three different sets of low heating rate (LHR) pyrolysis conditions including temperature and biomass bed geometry. It was shown by a characteristic time analysis that these pyrolysis conditions were not associated with a chemical regime in a large amount of devices. However, it has been shown experimentally that conditions used to prepare the char had a much lower influence on steam gasification kinetics than the biomass type.
Flotation in Water and Wastewater Treatment
George Z. Kyzas, Kostas A. Matis
August 28, 2018 (v1)
Keywords: Biomass, dispersed-air flotation, metals, particles, separation
Flotation constitutes a separation process that originated from mineral processing. Nowadays, wider applications have been found and compared to flotation for water and wastewater treatment. Stress in the present review paper was mainly applied to heavy metal ions recovery by flotation and the respective mechanism followed, being either ion, precipitate, or sorptive flotation. In the latter case, the use of adsorbents is included (such as powdered activated carbon, zeolites, and goethite), as well as various biosorbents. The flotation of the following metals was reviewed: copper, zinc, nickel, lead, iron, chromium, arsenic, gold, and others. The bubble generation method could be applied for typical dispersed-air flotation column, electroflotation, or dissolved-air flotation; the latter being the most appropriate established technique in water treatment. The role of particle size (for example, studying flotation of salt-type mineral fines) was also examined.
Combining Biomass, Natural Gas, Carbonless Heat to produce liquid fuels
Leila Hoseinzade, Thomas A Adams II
August 15, 2018 (v1)
Keywords: Biomass, Carbonless Heat, Natural Gas, Polygeneration
In this study, a new Biomass-Gas-Nuclear heat-To-Liquid fuel (BGNTL) process is presented which uses high-temperature nuclear heat as the heat source for steam methane reforming (SMR). This process co-produces liquid fuels (Fischer-Tropsch liquids, methanol and DME) and power. The BGNTL process was simulated using a combination of different software packages including gPROMS, MATLAB, ProMax, and Aspen Plus. This included the use of a rigorous multi-scale model for the nuclear-heat-powered SMR reactor which was developed in a prior work in gPROMS. Energy efficiency and cradle-to-grave life cycle inventory and life-cycle impact analyses of greenhouse gas (GHG) emissions were accomplished to analyze the environmental impacts of the BGNTL system. Plant performance was compared with a base case Biomass-Gas-To-Liquid (BGTL) process at the same size. In both processes, a carbon capture and storage (CCS) option is considered. It has been found that both processes result in negative total life... [more]
Aspen Plus Simulation of Biomass-Gas-and-Nuclear-To-Liquids (BGNTL) Processes (Using CuCl Route)
James Alexander Scott, Thomas Alan Adams II
August 7, 2018 (v1)
These are Aspen Plus simulation files for a Biomass-Gas-and-Nuclear-To-Liquids chemical plant (a conceptional design), which uses the Copper-Chloride route for hydrogen production. This is a part of a larger work (see linked LAPSE record for pre-print and associated publication in Canadian J Chem Eng). Process sections and major units in this simulation include: Gasification, Integrated-Gasification-Methane-Reforming, Pre-Reforming, Water Gas Shift, Autothermal Reforming, Syngas Blending and Upgrading, Solid Oxide Fuel Cell power islands, Fischer-Tropsch Synthesis, Methanol Synthesis, Dimethyl Ether Synthesis, Heat Recovery and Steam Generation, CO2 Compression for Sequestration, Cooling Towers, and various auxiliary units for heat and pressure management. See the linked work for a detailed description of the model.
Biomass-Gas-and-Nuclear-To-Liquids (BGNTL) Processes Part I: Model Development and Simulation
James Alexander Scott, Thomas Alan Adams II
August 7, 2018 (v1)
New polygeneration processes for the co-production of liquid fuels (Fischer-Tropsch liquids, methanol, and dimethyl ether) and electricity are presented. The processes use a combination of biomass, natural gas, and nuclear energy as primary energy feeds. Chemical process models were created and used to simulate candidate versions of the process, using combinations of models ranging from complex multi- scale models to standard process flowsheet models. The simulation results are presented for an Ontario, Canada case study to obtain key metrics such as efficiency and product conversions. Sample Aspen Plus files are provided in the supplementary material to be used by others.
Biomass-Gas-and-Nuclear-To-Liquids Aspen Plus Simulations
Leila Hoseinzade, Thomas A. Adams II
June 12, 2018 (v1)
Aspen Plus simulation for eight different chemical processes. Each simulation corresponds to a process which convert biomass, natural gas, and in some cases, nuclear energy, into either dimethyl ether (DME) or Fischer-Tropsch liquids (synthetic gasoline and diesel). Some processes contain carbon capture and sequestration (CCS) steps.

The processes may include various technologies such as biomass gasification, steam methane reforming, integrated gasification and natural gas reforming, integrated high temperature gas-cooled reactors and natural gas reforming, water gas shift reaction, FT synthesis, DME synthesis, MEA or MDEA based carbon capture, gas combustion turbines, gas cleaning, and other processing steps. Nuclear energy, when used, is integrated into the system via a high temperature helium coolant as an energy carrier from certain kinds of Gen IV nuclear reactors.

The eight processes are: BGNTL-FT (biomass-gas-nuclear-to-liquids with FT synthesis), BGNTL-FT-CCS (the same w... [more]
[Show All Keywords]