LAPSE

Subjects
Records with Subject: Energy Management
Showing records 1 to 25 of 128. [First] Page: 1 2 3 4 5 Last
A Model for Optimizing Location Selection for Biomass Energy Power Plants
Chia-Nan Wang, Tsang-Ta Tsai, Ying-Fang Huang
August 8, 2019 (v1)
Keywords: biomass energy, FAHP, FMCDM, MCDM, Optimization, site selection, TOPSIS
In addition to its potential for wave power, wind power, hydropower, and solar power, it can be said that Vietnam is a country with great potential for biomass energy derived from agricultural waste, garbage, and urban wastewater, which are resources widely available across the country. This huge amount of biomass, however, if left untreated, could become a major source of pollution and cause serious impacts on ecosystems (soil, water, and air), as well as on human health. In this research, the authors present a fuzzy multicriteria decision-making model (FMCDM) for optimizing the site selection process for biomass power plants. All of the criteria affecting location selection are identified by experts and literature reviews; in addition, the fuzzy analytic hierarchy process (FAHP) method was utilized so as to identify the weight of all of the criteria in the second stage. Furthermore, the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) is applied for ranking... [more]
Study on Grid-Connected Strategy of Distribution Network with High Hydropower Penetration Rate in Isolated Operation
Zifan Zhang, Zhidong Wang, Zhifeng Chen, Gan Wang, Na Shen, Changxing Guo
August 5, 2019 (v1)
Keywords: grid-connected strategy, island operation, small hydropower
As the largest global renewable source, hydropower is a useful supplement to mountainous distribution networks with abundant water resources, and shoulders a large portion of the regulation duty in many power systems. In particular, in the form of decentralized energy sources located to their customers, small hydropower (SHP) improve grid stability by diversifying the electricity system and reducing power loss. The mountainous distribution networks supplied by small hydropower are closed-loop design but open-loop operation, which easily causes the tripping of tie line even further the off-grid operation of small hydropower system. Once the tie line trips, the current countermeasures—such as hydropower shutdown and load shedding—do not fully guarantee the reliability of power supply and the utilization efficiency of hydropower. This paper studies the amplitude-frequency characteristics of SHP off-grid, according to the typical integration of hydropower in South China, a SHP on-grid/off-... [more]
Reactive Power Optimization of Large-Scale Power Systems: A Transfer Bees Optimizer Application
Huazhen Cao, Tao Yu, Xiaoshun Zhang, Bo Yang, Yaxiong Wu
August 5, 2019 (v1)
Keywords: behavior transfer, reactive power optimization, reinforcement learning, state-action chains, transfer bees optimizer
A novel transfer bees optimizer for reactive power optimization in a high-power system was developed in this paper. Q-learning was adopted to construct the learning mode of bees, improving the intelligence of bees through task division and cooperation. Behavior transfer was introduced, and prior knowledge of the source task was used to process the new task according to its similarity to the source task, so as to accelerate the convergence of the transfer bees optimizer. Moreover, the solution space was decomposed into multiple low-dimensional solution spaces via associated state-action chains. The transfer bees optimizer performance of reactive power optimization was assessed, while simulation results showed that the convergence of the proposed algorithm was more stable and faster, and the algorithm was about 4 to 68 times faster than the traditional artificial intelligence algorithms.
Off-Grid Solar PV Power Generation System in Sindh, Pakistan: A Techno-Economic Feasibility Analysis
Li Xu, Ying Wang, Yasir Ahmed Solangi, Hashim Zameer, Syed Ahsan Ali Shah
July 31, 2019 (v1)
Keywords: CO2 mitigation, economic feasibility, off-grid Solar PV power generation, Pakistan, remote rural regions
The off-grid solar photovoltaic (PV) system is a significant step towards electrification in the remote rural regions, and it is the most convenient and easy to install technology. However, the strategic problem is in identifying the potential of solar energy and the economic viability in particular regions. This study, therefore, addresses this problem by evaluating the solar energy potential and economic viability for the remote rural regions of the Sindh province, Pakistan. The results recommended that the rural regions of Sindh have suitable solar irradiance to generate electricity. An appropriate tilt angle has been computed for the selected rural regions, which significantly enhances the generation capacity of solar energy. Moreover, economic viability has been undertaken in this study and it was revealed that the off-grid solar PV power generation system provides electricity at the cost of Pakistani Rupees (PKR) 6.87/kWh and is regarded as much cheaper than conventional energy s... [more]
Risk Rating Method Based on the Severity Probability Risk Value and Reserved Risk Maintenance Resource Cost of the Node Disconnection of the Power System
Qingwu Gong, Si Tan
July 31, 2019 (v1)
Keywords: reserve risk maintenance resource cost (RRMRC), Risk Rating Model (RRM), severity probability risk valuation (SPRV)
In order to solve the problem of traditional risk rating methods without considering the cost of risk maintenance resources and ignoring the low risk of “High Loss Severity (HLS) with low probability” and the low risk of “High Failure Probability (HFP) with low loss severity”, a node disconnection risk rating method (NDRRM) is proposed. This method considers the severity probability risk valuation (SPRV) and reserve risk maintenance resource cost (RRMRC). The risk rating method based on SPRV developed from the traditional risk valuation method can simultaneously identify the nodes with the highest severity values, the nodes with the highest probability of failure, and the nodes with the largest risk valuation. On the basis of the above model, we consider the cost constraints of the reserve risk maintenance resource and put forward a risk rating method based on SPRV and RRMRC. The risk rating results of this model are suitable for guiding risk maintenance in practice. Simulations are ca... [more]
Analysis of the Excess Hydrocarbon Gases Output from Refinery Plants
Jerzy Szpalerski, Adam Smoliński
July 28, 2019 (v1)
Keywords: industrial gas streams, petrochemical processes, refinery plants, waste gases
The article presents the ideas of maximizing recovery of flare gases in the industrial plants processing hydrocarbons. The functioning of a flare stack and depressurization systems in a typical refinery plant is described, and the architecture of the depressurization systems and construction of the flares are shown in a simplified way. The proposal to recover the flare gases together with their output outside the industrial plant, in order to minimize impact on the environment (reduction of emissions) and to limit consumption of fossil fuels is presented. Contaminants that may be found in the depressurization systems are indicated. The idea presented in the article assumes the injection of an excess stream of gases into an existing natural gas pipelines system. A method of monitoring is proposed, aiming to eliminate introduction of undesirable harmful components into the systems.
Power Transmission Congestion Management Based on Quasi-Dynamic Thermal Rating
Yanling Wang, Zidan Sun, Zhijie Yan, Likai Liang, Fan Song, Zhiqiang Niu
July 28, 2019 (v1)
Keywords: meteorological parameter, quasi-dynamic thermal rating (QDR), transmission congestion, transmission line
Transmission congestion not only increases the operation risk, but also reduces the operation efficiency of power systems. Applying a quasi-dynamic thermal rating (QDR) to the transmission congestion alarm system can effectively alleviate transmission congestion. In this paper, according to the heat balance equation under the IEEE standard, a calculation method of QDR is proposed based on the threshold of meteorological parameters under 95% confidence level, which is determined by statistical analysis of seven-year meteorological data in Weihai, China. The QDR of transmission lines is calculated at different time scales. A transmission congestion management model based on QDR is established, and the transmission congestion alarm system including conductor temperature judgment is proposed. The case shows that transmission congestion management based on QDR is feasible, which improves the service life and operation flexibility of the power grid in emergencies and avoids power supply shor... [more]
Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid
Ying Han, Weirong Chen, Qi Li
July 26, 2019 (v1)
Keywords: battery bank, DC microgrid, energy management strategy, multiple operating states, photovoltaic (PV) array, proton exchange membrane fuel cell (PEMFC)
It is a great challenge for DC microgrids with stochastic renewable sources and volatility loads to achieve better operation performance. This study proposes an energy management strategy based on multiple operating states for a DC microgrid, which is comprised of a photovoltaic (PV) array, a proton exchange membrane fuel cell (PEMFC) system, and a battery bank. This proposed strategy can share the power properly and keep the bus voltage steady under different operating states (the state of charge (SOC) of the battery bank, loading conditions, and PV array output power). In addition, a microgrids test platform is established. In order to verify the effectiveness of the proposed energy management strategy, the strategy is implemented in a hardware system and experimentally tested under different operating states. The experimental results illustrate the good performance of the proposed control strategy for the DC microgrid under different scenarios of power generation and load demand.
Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part I: Wind Speed Profile Model
Yichao Liu, Daoyi Chen, Qian Yi, Sunwei Li
July 26, 2019 (v1)
Keywords: atmospheric stability, offshore wind farm, South China Sea, wind profile model
With the setting of wind energy harvesting moving from coastal waters to deep waters, the South China Sea has been deemed to offer great potential for the construction of floating wind farms thanks to the abundance of wind energy resources. An engineering model describing the wind profiles and wave spectra specific to the South China Sea conditions, which is the precondition for offshore wind farm construction, has, however, not yet been proposed. In the present study, a series of numerical simulations have been conducted using the Weather Forecast and Research model. Through analyzing the wind and wave information extracted from the numerical simulation results, engineering models to calculate vertical profiles of wind speeds and wave spectra have been postulated. While the present paper focuses on the wind profile model, a companion paper articulates the wave spectrum model. For wind profiles under typhoon conditions, the power-law and log-law models have been found applicable under... [more]
Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part II: Wave Spectrum Model
Yichao Liu, Sunwei Li, Qian Yi, Daoyi Chen
July 26, 2019 (v1)
Keywords: Joint North Sea Wave Project (JONSWAP) spectrum model, offshore wind farm, simulating waves nearshore (SWAN) simulation, South China Sea
Along with the commercialization of offshore wind energy in China, the South China Sea has been identified as ideal for constructing offshore wind farms, especially for farms consisting of floating wind turbines over deep waters. Since the wind profiles and wave spectra are somewhat primitive for the design of an offshore wind turbine, engineering models describing the wind and wave characteristics in the South China Sea area are necessary for the offshore wind energy exploitation given the meteorological, hydrological, and geographical differences between the South China Sea and the North/Norwegian Sea, where the commonly used wind profile and wave spectrum models were designated. In the present study; a series of numerical simulations were conducted to reveal the wave characteristics in the South China Sea under both typhoon and non-typhoon conditions. By analyzing the simulation results; the applicability of the Joint North Sea Wave Project (JONSWAP) spectrum model; in terms of char... [more]
Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations
Jiangbo Wang, Kai Liu, Toshiyuki Yamamoto
July 26, 2019 (v1)
Keywords: electric vehicle (EV), electricity consumption, linear regression model, multilevel model, sparse Global Positioning System (GPS) observations
Improving the estimation accuracy for the energy consumption of electric vehicles (EVs) would greatly contribute to alleviating the range anxiety of drivers and serve as a critical basis for the planning, operation, and management of charging infrastructures. To address the challenges in energy consumption estimation encountered due to sparse Global Positioning System (GPS) observations, an estimation model is proposed that considers both the kinetic characteristics from sparse GPS observations and the unique attributes of EVs: (1) work opposing the rolling resistance; (2) aerodynamic friction losses; (3) energy consumption/generation depending on the grade of the route; (4) auxiliary load consumption; and (5) additional energy losses arising from the unstable power output of the electric motor. Two quantities, the average energy consumption per kilometer and the energy consumption for an entire trip, were focused on and compared for model fitness, parameter, and effectiveness, and the... [more]
Characterization and Analysis of Energy Demand Patterns in Airports
Sergio Ortega Alba, Mario Manana
July 26, 2019 (v1)
Keywords: airports, electric charges, electric load profile, energy consumption, energy demand patterns, Energy Efficiency, energy modeling, infrastructure energy conservation, loads
Airports in general have high-energy consumption. Influenced by many factors, the characteristics of airport energy consumption are stochastic, nonlinear and dynamic. In recent years, airport managers have made huge efforts to harmonize airport operation with environmental sustainability by minimizing the environmental impact, with energy conservation and energy efficiency as one of their pillars. A key factor in order to reduce energy consumption at airports is to understand the energy use and consumption behavior, due to the multiple parameters and singularities that are involved. In this article, a 3-step methodology based on monitoring methods is proposed to characterize and analyze energy demand patterns in airports through their electric load profiles, and is applied to the Seve Ballesteros-Santander Airport (Santander, Spain). This methodology can be also used in airports in order to determine the way energy is used, to establish the classification of the electrical charges base... [more]
Decision Support System for a Low Voltage Renewable Energy System
Iulia Stamatescu, Nicoleta Arghira, Ioana Făgărăşan, Grigore Stamatescu, Sergiu Stelian Iliescu, Vasile Calofir
July 26, 2019 (v1)
Keywords: decision support system, distributed energy resources, low voltage renewable energy system, microgrid, power systems, renewable energy sources
This paper presents the development of a decision support system (DSS) for a low-voltage grid with renewable energy sources (photovoltaic panels and wind turbine) which aims at achieving energy balance in a pilot microgrid with less energy consumed from the network. The DSS is based on a procedural decision algorithm that is applied on a pilot microgrid, with energy produced from renewable energy sources, but it can be easily generalized for any microgrid. To underline the benefits of the developed DSS two case scenarios (a household and an office building with different energy consumptions) were analyzed. The results and throw added value of the paper is the description of an implemented microgrid, the development and testing of the decision support system on real measured data. Experimental results have demonstrated the validity of the approach in rule-based decision switching.
Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters
Zanxiang Nie, Xi Xiao, Pritesh Hiralal, Xuanrui Huang, Richard McMahon, Min Zhang, Weijia Yuan
July 26, 2019 (v1)
Keywords: Energy Storage, linear machine, power conversion, Renewable and Sustainable Energy, Wave Energy
Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermit... [more]
Large-Scale Electrochemical Energy Storage in High Voltage Grids: Overview of the Italian Experience
Roberto Benato, Gianluca Bruno, Francesco Palone, Rosario M. Polito, Massimo Rebolini
July 26, 2019 (v1)
Keywords: ancillary services, energy and power intensive, large-scale electrochemical storage
This paper offers a wide overview on the large-scale electrochemical energy projects installed in the high voltage Italian grid. Detailed descriptions of energy (charge/discharge times of about 8 h) and power intensive (charge/discharge times ranging from 0.5 h to 4 h) installations are presented with some insights into the authorization procedures, safety features, and ancillary services. These different charge/discharge times reflect the different operation uses inside the electric grid. Energy intensive storage aims at decoupling generation and utilization since, in the southern part of Italy, there has been a great growth of wind farms: these areas are characterized by a surplus of generation with respect to load absorption and to the net transport capacity of the 150 kV high voltage backbones. Power intensive storage aims at providing ancillary services inside the electric grid as primary and secondary frequency regulation, synthetic rotational inertia, and further functionalities... [more]
Integration of Lithium-Ion Battery Storage Systems in Hydroelectric Plants for Supplying Primary Control Reserve
Fabio Bignucolo, Roberto Caldon, Massimiliano Coppo, Fabio Pasut, Martino Pettinà
July 26, 2019 (v1)
Keywords: battery storage system, frequency regulation, primary control reserve, renewables, run-of-river hydroelectric plant
The ever-growing diffusion of renewables as electrical generation sources is forcing the electrical power system to face new and challenging regulation problems to preserve grid stability. Among these, the primary control reserve is reckoned to be one of the most important issues, since the introduction of generators based on renewable energies and interconnected through static converters, if relieved from the primary reserve contribution, reduces both the system inertia and the available power reserve in case of network events involving frequency perturbations. In this scenario, renewable plants such as hydroelectric run-of-river generators could be required to provide the primary control reserve ancillary service. In this paper, the integration between a multi-unit run-of-river power plant and a lithium-ion based battery storage system is investigated, suitably accounting for the ancillary service characteristics as required by present grid codes. The storage system is studied in ter... [more]
Equivalence of Primary Control Strategies for AC and DC Microgrids
Eneko Unamuno, Jon Andoni Barrena
July 26, 2019 (v1)
Keywords: decentralized control, distributed generation (DG), inertia emulation, microgrids, power sharing, primary control, stability, virtual synchronous machine (VSM), virtual-impedance
Microgrid frequency and voltage regulation is a challenging task, as classical generators with rotational inertia are usually replaced by converter-interfaced systems that inherently do not provide any inertial response. The aim of this paper is to analyse and compare autonomous primary control techniques for alternating current (AC) and direct current (DC) microgrids that improve this transient behaviour. In this context, a virtual synchronous machine (VSM) technique is investigated for AC microgrids, and its behaviour for different values of emulated inertia and droop slopes is tested. Regarding DC microgrids, a virtual-impedance-based algorithm inspired by the operation concept of VSMs is proposed. The results demonstrate that the proposed strategy can be configured to have an analogous behaviour to VSM techniques by varying the control parameters of the integrated virtual-impedances. This means that the steady-state and transient behaviour of converters employing these strategies c... [more]
Modeling and Vulnerability Analysis of Cyber-Physical Power Systems Considering Network Topology and Power Flow Properties
Jia Guo, Yuqi Han, Chuangxin Guo, Fengdan Lou, Yanbo Wang
July 26, 2019 (v1)
Keywords: cascading failure, complex network theory, cyber-physical power system (CPPS), interdependence, vulnerability analysis
Conventional power systems are developing into cyber-physical power systems (CPPS) with wide applications of communication, computer and control technologies. However, multiple practical cases show that the failure of cyber layers is a major factor leading to blackouts. Therefore, it is necessary to discuss the cascading failure process considering cyber layer failures and analyze the vulnerability of CPPS. In this paper, a CPPS model, which consists of cyber layer, physical layer and cyber-physical interface, is presented using complex network theory. Considering power flow properties, the impacts of cyber node failures on the cascading failure propagation process are studied. Moreover, two vulnerability indices are established from the perspective of both network structure and power flow properties. A vulnerability analysis method is proposed, and the CPPS performance before and after cascading failures is analyzed by the proposed method to calculate vulnerability indices. In the cas... [more]
A Frequency Control Approach for Hybrid Power System Using Multi-Objective Optimization
Mohammed Elsayed Lotfy, Tomonobu Senjyu, Mohammed Abdel-Fattah Farahat, Amal Farouq Abdel-Gawad, Atsuhi Yona
July 26, 2019 (v1)
Keywords: frequency control, full-order observer, hybrid power system, multi-objective optimization, supply balance
A hybrid power system uses many wind turbine generators (WTG) and solar photovoltaics (PV) in isolated small areas. However, the output power of these renewable sources is not constant and can diverge quickly, which has a serious effect on system frequency and the continuity of demand supply. In order to solve this problem, this paper presents a new frequency control scheme for a hybrid power system to ensure supplying a high-quality power in isolated areas. The proposed power system consists of a WTG, PV, aqua-electrolyzer (AE), fuel cell (FC), battery energy storage system (BESS), flywheel (FW) and diesel engine generator (DEG). Furthermore, plug-in hybrid electric vehicles (EVs) are implemented at the customer side. A full-order observer is utilized to estimate the supply error. Then, the estimated supply error is considered in a frequency domain. The high-frequency component is reduced by BESS and FW; while the low-frequency component of supply error is mitigated using FC, EV and D... [more]
Tie-Line Bias Control Applicability to Load Frequency Control for Multi-Area Interconnected Power Systems of Complex Topology
Chunyu Chen, Kaifeng Zhang, Kun Yuan, Xianliang Teng
July 26, 2019 (v1)
Keywords: load frequency control, ring network, tie-line bias control (TBC) applicability, topology
The tie-line bias control (TBC) method has been widely used in the load frequency control (LFC) of multi-area interconnected systems. However, it should be questioned whether the conventional TBC can still apply to LFC when considering the complication of structures of power systems. LFC, in essence, is to stabilize system frequency/tie-line power by controlling controlled outputs’ area control error (ACE). In this paper, relations between LFC control variables and controlled outputs are expressed as a system of equations, based on which an exemplary ring network is studied. Sufficient and necessary conditions for TBC applicability is presented, and a novel LFC mode is proposed for a general ring network where TBC cannot work. Finally, TBC applicability to multi-area systems with general topology is studied, and a general LFC mode is proposed for systems where TBC is not definitely applicable, thus rendering routines that may guide LFC design of future power systems with more complex t... [more]
A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC) Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs)
Jing Lian, Shuang Liu, Linhui Li, Xuanzuo Liu, Yafu Zhou, Fan Yang, Lushan Yuan
July 26, 2019 (v1)
Keywords: driving intention, mixed integer linear programming (MILP), mixed logic dynamical model, model predictive control (MPC), nonlinear auto-regressive (NAR) neural network
Plug-in hybrid electric vehicles (PHEVs) can be considered as a hybrid system (HS) which includes the continuous state variable, discrete event, and operation constraint. Thus, a model predictive control (MPC) strategy for PHEVs based on the mixed logical dynamical (MLD) model and short-term vehicle speed prediction is proposed in this paper. Firstly, the mathematical model of the controlled PHEV is set-up to evaluate the energy consumption using the linearized models of core power components. Then, based on the recognition of driving intention and the past vehicle speed data, a nonlinear auto-regressive (NAR) neural network structure is designed to predict the vehicle speed for known driving profiles of city buses and the predicted vehicle speed is used to calculate the total required torque. Next, a MLD model is established with appropriate constraints for six possible driving modes. By solving the objective function with the Mixed Integer Linear Programming (MILP) algorithm, the opt... [more]
Stability Analysis and Stability Enhancement Based on Virtual Harmonic Resistance for Meshed DC Distributed Power Systems with Constant Power Loads
Huiyong Hu, Xiaoming Wang, Yonggang Peng, Yanghong Xia, Miao Yu, Wei Wei
July 26, 2019 (v1)
Keywords: meshed DC distributed power systems, stability criterion, stability enhancement, virtual harmonic resistance
This paper addresses the stability issue of the meshed DC distributed power systems (DPS) with constant power loads (CPLs) and proposes a stability enhancement method based on virtual harmonic resistance. In previous researches, the network dynamics of the meshed DC DPS are often ignored, which affects the derivation of the equivalent system impendence. In addition, few of them have considered the meshed DC DPS including multiple sources with voltage-controlled converters and CPLs. To tackle the aforementioned challenge, this paper mainly makes the following efforts. The component connection method (CCM) is employed and expanded to derive the stability criterion of the meshed DC DPS with CPLs. This stability criterion can be simplified to relate only with the network node admittance matrix, the output impendences of the sources, and the input admittances of the CPLs. A virtual harmonic resistance through the second-order generalized integrator (SOGI) is added in the source with the vol... [more]
Impact of Battery Energy Storage System Operation Strategy on Power System: An Urban Railway Load Case under a Time-of-Use Tariff
Hyeongig Kim, Jae-Haeng Heo, Jong-Young Park, Yong Tae Yoon
July 26, 2019 (v1)
Keywords: battery energy storage system (BESS), energy storage owner (ESO), operation strategy, price-based demand response, time-of-use tariff, urban railway load
Customer-owned battery energy storage systems (BESS) have been used to reduce electricity costs of energy storage owners (ESOs) under a time-of-use (TOU) tariff in Korea. However, the current TOU tariff can unintentionally induce customer’s electricity usage to have a negative impact on power systems. This paper verifies the impact of different BESS operation strategies on power systems under a TOU tariff by analyzing the TOU tariff structure and the customer’s load pattern. First, several BESS operation strategies of ESO are proposed to reduce the electricity cost. In addition, a degradation cost calculation method for lithium ion batteries is considered for the ESO to determine the optimal BESS operation strategy that maximizes both electricity cost and annual investment cost. The optimal BESS operation strategy that maximizes ESO’s net benefit is illustrated by simulation using an urban railway load data from Namgwangju Station, Korea. The results show that BESS connected to urban r... [more]
Power Consumption Analysis of Electrical Installations at Healthcare Facility
Emmanuel Guillen-Garcia, Angel L. Zorita-Lamadrid, Oscar Duque-Perez, Luis Morales-Velazquez, Roque Alfredo Osornio-Rios, Rene de Jesus Romero-Troncoso
July 26, 2019 (v1)
Keywords: data acquisition, data analysis, energy consumption estimation, power quality
This paper presents a methodology for power consumption estimation considering harmonic and interharmonic content and then it is compared to the power consumption estimation commonly done by commercial equipment based on the fundamental frequency, and how they can underestimate the power consumption considering power quality disturbances (PQD). For this purpose, data of electrical activity at the electrical distribution boards in a healthcare facility is acquired for a long time period with proprietary equipment. An analysis in the acquired current and voltage signals is done, in order to compare the power consumption centered in the fundamental frequency with the generalized definition of power consumption. The results obtained from the comparison in the power consumption estimation show differences between 4% and 10% of underestimated power consumption. Thus, it is demonstrated that the presence of harmonic and interharmonic content provokes a significant underestimation of power con... [more]
Non-Linear Behavioral Modeling for DC-DC Converters and Dynamic Analysis of Distributed Energy Systems
Xiancheng Zheng, Husan Ali, Xiaohua Wu, Haider Zaman, Shahbaz Khan
July 26, 2019 (v1)
Keywords: behavioral modeling, distributed energy system (DES), electronic power distribution, non-linear, power electronics converter
In modern distributed energy systems (DES), focus is shifting from the conventional centralized approach towards distributed architectures. However, modeling and analysis of these systems is more complex, as it involves the interface of multiple energy sources with many different type of loads through power electronics converters. The integration of power electronics converters allows distributed renewable energy sources to become part of modern electronics power distribution systems (EPDS). It will also facilitate the ongoing research towards DC-based DES which is mostly composed of commercial DC-DC converters whose internal structure and parameters are unknown. For the system level analysis, the behavioral modeling technique is the only choice. Since most power electronics converters are non-linear systems and linear models can’t model their dynamics to a desired level of accuracy, hence non-linear modeling is required for accurate modeling. The non-linear modeling approach presented... [more]
Showing records 1 to 25 of 128. [First] Page: 1 2 3 4 5 Last
[Show All Subjects]