Browse
Records Added in June 2018
Records added in June 2018
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: June | July | August | September | October | November | December
Future directions in process and product synthesis and design
Mariano Martín, Thomas A. Adams II
June 25, 2018 (v1)
Keywords: Future Directions, LAPSE, Process Design, Product Design, PSE Technology Tree
We present an overview of the current state-of-the-art of the field of chemical process and product synthesis and design. In this talk, we outline some of the most interesting new challenges and directions for the field, including: new pushes for including renewable energy into chemical systems, related issues with energy storage, the move toward flexible and unsteady-state chemical processes, the considerations of uncertainty into the design process, new advances in specialty processes, process intensification, modularization, and more. Also, we announce and present the PSE Technology Tree Wiki, a community-based encyclopedia for the PSE community that organizes concepts into a technology tree. We also announce and present LAPSE: the Living Archive for Process Systems Engineering, a new open-data / open-access repository for the PSE community, which contains unique and innovative features designed to foster better dissemination of research, easy access to open models and simulations,... [more]
A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO2 capture
Simon Roussanaly, Rahul Anantharaman, Karl Lindqvist, Brede Hagen
June 22, 2018 (v1)
Keywords: Attainable Region, Carbon Dioxide Capture, gas separation membranes, post-combustion, property maps
Developing “good” membrane modules and materials is a key step towards reducing the cost of membrane-based CO2 capture. While this is traditionally being done through incremental development of existing and new materials, this paper presents a new approach to identify membrane materials with a disruptive potential to reduce the cost of CO2 capture for six potential industrial and power generation cases. For each case, this approach first identifies the membrane properties targets required to reach cost-competitiveness and several cost-reduction levels compared to MEA-based CO2 capture, through the evaluation of a wide range of possible membrane properties. These properties targets are then compared to membrane module properties which can be theoretically achieved using 401 polymeric membrane materials, in order to highlight 73 high-potential materials which could be used by membrane development experts to select materials worth pushing towards further development once practical conside... [more]
Application of a Two-Level Rolling Horizon Optimization Scheme to a Solid-Oxide Fuel Cell and Compressed Air Energy Storage Plant for the Optimal Supply of Zero-Emissions Peaking Power
Jake Nease, Nina Monteiro, Thomas A. Adams II
June 19, 2018 (v1)
We present a new two-level rolling horizon optimization framework applied to a zero-emissions coal-fueled solid-oxide fuel cell power plant with compressed air energy storage for peaking applications. Simulations are performed where the scaled hourly demand for the year 2014 from the Ontario, Canada market is met as closely as possible. It was found that the proposed two-level strategy, by slowly adjusting the SOFC stack power upstream of the storage section, can improve load-following performance by 86% compared to the single-level optimization method proposed previously. A performance analysis indicates that the proposed approach uses the available storage volume to almost its maximum potential, with little improvement possible without changing the system itself. Further improvement to load-following is possible by increasing storage volumes, but with diminishing returns. Using an economically-focused objective function can improve annual revenue generation by as much as 6.5%, but no... [more]
Technical challenges in operating an SOFC in fuel flexible gas turbine hybrid systems: Coupling effects of cathode air mass flow
Nor Farida Harun, David Tucker, Thomas A. Adams II
June 19, 2018 (v1)
Keywords: Cathode air mass flow, Cyber-physical simulations, Fuel cell gas turbine hybrid, Fuel composition changes, Open loop characterization, Solid Oxide Fuel Cells
Considering the limited turndown potential of gasification technologies, supplementing a fuel cell turbine hybrid power system with natural gas provides flexibility that could improve economic viability. The dynamic characterization of fuel composition transients is an essential first step in completing the system identification required for controls development. In this work, both open loop and closed loop transient responses of the fuel cell in a solid oxide fuel cell (SOFC) gas turbine (GT) hybrid system to fuel composition changes were experimentally investigated using a cyber-physical fuel cell system. A transition from methane lean syngas to methane rich gases with no turbine speed control was studied. The distributed performance of the fuel cell was analyzed in detail with temporal and spatial resolution across the cell.

Dramatic changes in fuel cell system post combustor thermal output or “thermal effluent” resulting from anode composition changes drove turbine transients th... [more]
Blackout! Classroom Edition
Jake Nease, Thomas A. Adams II
December 12, 2019 (v2)
Subject: Education
Keywords: Classroom Workshop, Electricity Grid, Energy Markets, Game Theory, Open Source, Video Game
Blackout! Is a classroom game (suitable for middle school and up to and including university students) which simulates open electricity markets. Up to eight players compete on the open market to build power plants, bid on sale prices, and deliver the most electricity to their customers. Demand changes each turn (one simulation hour) over the course of a day. The game helps to teach about the trade-offs between different kinds of power plants, such as cost (capital cost vs. operating cost), reliability (thermal vs. renewables), flexibilty (such as base-load vs. peaking power), and so on. The current version includes wind, solar, nuclear, coal, and natural gas based power plants. Also included in this submission are sample workshop materials (i.e. instructional slides) useful in a classroom setting. Please see also the linked academic research article discussing the statistical outcomes of using the game with middle and high school students.

An article in Chemical Engineering Educatio... [more]
Space-constrained purification of dimethyl ether through process intensification using semicontinuous dividing wall columns
Sarah E. Ballinger, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Aspen Plus, Dimethyl Ether, Dividing wall column, Mobile Plant, Plant-on-a-truck, Process Intensification, Semicontinuous Distillation, Simulation
In this work, a distillation system is designed to purify dimethyl ether (DME) from its reaction by-products in the conversion of flare gas into a useful energy product. The distillation equipment has a size constraint for easy transportation, making process intensification the best strategy to efficiently separate the mixture. The process intensification distillation techniques explored include the dividing wall column (DWC) and a novel semicontinuous dividing wall column (S-DWC). The DWC and the S-DWC both purify DME to fuel grade purity along with producing high purity waste streams. An economic comparison is made between the two systems. The DWC is a cheaper method of producing DME however the purity of methanol, a reaction intermediate, is not as high as the S-DWC. Overall, this research shows that it is possible to purify DME and its reaction by-products in a 40-foot distillation column at a cost that is competitive with Diesel.
Comparison of CO2 Capture Approaches for Fossil-Based Power Generation: Review and Meta-Study
Thomas A. Adams II, Leila Hoseinzade, Pranav Bhaswanth Madabhushi, Ikenna J. Okeke
June 19, 2018 (v2)
Keywords: Carbon Capture, Carbon Dioxide Sequestration, CO2 membrane, IGCC, oxyfuels, Post-combustion capture, Pre-combustion capture, Solid Oxide Fuel Cells
This work is a meta-study of CO2 capture processes for coal and natural gas power generation, including technologies such as post-combustion solvent-based carbon capture, the integrated gasification combined cycle process, oxyfuel combustion, membrane-based carbon capture processes, and solid oxide fuel cells. A literature survey of recent techno-economic studies was conducted, compiling relevant data on costs, efficiencies, and other performance metrics. The data were then converted in a consistent fashion to a common standard (such as a consistent net power output, country of construction, currency, base year of operation, and captured CO2 pressure) such that a meaningful and direct comparison of technologies can be made. The processes were compared against a standard status quo power plant without carbon capture to compute metrics such as cost of CO2 emissions avoided to identify the most promising designs and technologies to use for CO2 emissions abatement.
Modeling and simulation of an integrated steam reforming and nuclear heat system
Leila Hoseinzade, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Dynamic Modelling, Integrated Systems, Methane Reforming, Nuclear Heat, Simulation, Syngas
In this study, a dynamic and two-dimensional model for a steam methane reforming process integrated with nuclear heat production is developed. The model is based on first principles and considers the conservation of mass, momentum and energy within the system. The model is multi-scale, considering both bulk gas effects as well as spatial differences within the catalyst particles. Very few model parameters need to be fit based on the design specifications reported in the literature. The resulting model fits the reported design conditions of two separate pilot-scale studies (ranging from 0.4 to 10 MW heat transfer duty). A sensitivity analysis indicated that disturbances in the helium feed conditions significantly affect the system, but the overall system performance only changes slightly even for the large changes in the value of the most uncertain parameters.
Techno-economic comparison of Acetone-Butanol-Ethanol fermentation using various extractants
Giancarlo Dalle Ave, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Acetone, Butanol, Cost of CO2 Emissions Avoided, Ethanol, Extraction, Fermentation, Technoeconomic Analysis
This work compares various chemicals for use as extractants in second-generation Acetone-Butanol-Ethanol fermentation on economic and environmental bases. Both non-toxic and toxic extractants are considered in this study. The combinative extractive-distillation separation process was modelled using a combination of Microsoft Excel 2013, MATLAB 2015 and Aspen Plus v8.8. Separation trains were designed and optimized for each extractant to best take advantage of extractant properties. Upstream units considered in this analysis include: biomass (switchgrass) solids processing, biomass pre-treatment and saccharification, and fermentation. Downstream processes considered include utility generation and wastewater treatment. The cost of CO2 equivalent emissions avoided (CCA) was used as the metric to compare the environmental impact of each process as compared to conventional petroleum-based gasoline. The economic and environmental best extractant is shown to be 2-ethyl-hexanol with a minimum... [more]
Techno-economic comparison of Acetone-Butanol-Ethanol fermentation using various extractants
Giancarlo Dalle Ave, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Acetone, Butanol, Cost of CO2 Emissions Avoided, Ethanol, Extraction, Fermentation, Technoeconomic Analysis
This work compares various chemicals for use as extractants in second-generation Acetone-Butanol-Ethanol fermentation on economic and environmental bases. Both non-toxic and toxic extractants are considered in this study. The combinative extractive-distillation separation process was modelled using a combination of Microsoft Excel 2013, MATLAB 2015 and Aspen Plus v8.8. Separation trains were designed and optimized for each extractant to best take advantage of extractant properties. Upstream units considered in this analysis include: biomass (switchgrass) solids processing, biomass pre-treatment and saccharification, and fermentation. Downstream processes considered include utility generation and wastewater treatment. The cost of CO2 equivalent emissions avoided (CCA) was used as the metric to compare the environmental impact of each process as compared to conventional petroleum-based gasoline. The economic and environmental best extractant is shown to be 2-ethyl-hexanol with a minimum... [more]
Direct Steam Generation Concentrated Solar Power Plant with a Decalin/Naphthalene Thermochemical Storage System
Haoxiang Lai, Thomas A. Adams II
November 20, 2018 (v2)
This study presents the design and analysis of a new integrated direct steam generation (DSG) concentrated solar power (CSP) plant with a decalin/naphthalene thermochemical storage system. Model simulations were performed in accordance to historical hourly solar radiation data over a year, using a combination of Aspen Plus v10, MATLAB 2016b, and Microsoft Excel VBA. It was found that the proposed plant feasibly stored and discharged energy, based on the solar radiation and chemical storage availability, to maintain base-load power productions (250 MW or 120 MW) with an overall efficiency of 14.6%. The effectiveness of the designed storage system was found to be comparable to a molten salt storage system which is currently used in existing CSP plants. The proposed integrated DSG CSP plant with a decalin/naphthalene thermochemical storage system shows promise for being an alternative to existing CSP plants.
Direct Steam Generation Concentrated Solar Power Plant with a Decalin/Naphthalene Thermochemical Storage System
Haoxiang Lai, Thomas A. Adams II
June 12, 2018 (v1)
This study presents the design and analysis of a new integrated direct steam generation (DSG) concentrated solar power (CSP) plant with a decalin/naphthalene thermochemical storage system. Model simulations were performed in accordance to historical hourly solar radiation data over a year, using a combination of Aspen Plus v10, MATLAB 2016b, and Microsoft Excel VBA. It was found that the proposed plant feasibly stored and discharged energy, based on the solar radiation and chemical storage availability, to maintain base-load power productions (250 MW or 120 MW) with an overall efficiency of 14.6%. The effectiveness of the designed storage system was found to be comparable to a molten salt storage system which is currently used in existing CSP plants. The proposed integrated DSG CSP plant with a decalin/naphthalene thermochemical storage system shows promise for being an alternative to existing CSP plants.
The Optimal Design of a Distillation System for the Flexible Polygeneration of Dimethyl Ether and Methanol Under Uncertainty
Thomas A. Adams II, Tokiso Thatho, Matthew C. Le Feuvre, Christopher L.E. Swartz
June 12, 2018 (v1)
Two process designs for the separation section of a flexible dimethyl ether and methanol polygeneration plant are presented, as well as an optimization method which can determine the optimal design under market uncertainty quickly and to global optimality without loss of model fidelity. The polygeneration plant produces a product mixture that is either mostly dimethyl ether or mostly methanol depending on market conditions by using a classic two-stage dimethyl ether production catalytic reaction route in which the second stage is bypassed when the market demand is such that methanol production is more favorable than dimethyl ether. The downstream distillation sequence is designed to purify the products to desired specifications despite the wide variability in feed condition that corresponds to the upstream reaction system operating either in DME-rich or methanol-rich mode. Because the optimal design depends on uncertain market conditions (realized as the percentage of the time in which... [more]
Dynamic modeling of integrated mixed reforming and carbonless heat systems
Leila Hoseinzade, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Carbonless Heat, Dry Reforming, Dynamic Modelling, Integrated Systems, Steam Reforming, Syngas
In the previous study, a dynamic and two-dimensional model for a steam methane reforming process integrated with nuclear heat production was developed. It was shown that the integrated high temperature gas-cooled reactor (HTGR)/steam methane reforming (SMR) is an efficient process for applications such as hydrogen production. In this study, it is demonstrated that combining nuclear heat with the mix of steam and dry reforming process can be a promising option to achieve certain desired H2/CO ratios for Fischer-Tropsch or other downstream energy conversion processes. The model developed in the previous study is extended to the combined steam and dry reforming process. The resulting model was validated using reported experimental data at non-equilibrium and equilibrium conditions. The dynamic and steady state performance of the integrated mixed reforming of methane and nuclear heat system was studied and it was found that in addition to desired H2/CO ratios, higher methane conversion and... [more]
Biomass-Gas-and-Nuclear-To-Liquids Aspen Plus Simulations
Leila Hoseinzade, Thomas A. Adams II
December 7, 2018 (v2)
In this paper, several new processes are proposed which co-generate electricity and liquid fuels (such as diesel, gasoline, or dimethyl ether) from biomass, natural gas and heat from a high temperature gas-cooled reactor. This carbonless heat provides the required energy to drive an endothermic steam methane reforming process, which yields H2-rich syngas (H2/CO>6) with lower greenhouse gas emissions than traditional steam methane reforming processes. Since downstream Fischer-Tropsch, methanol, or dimethyl ether synthesis processes require an H2/CO ratio of around 2, biomass gasification is integrated into the process. Biomass-derived syngas is sufficiently H2-lean such that blending it with the steam methane reforming derived syngas yields a syngas of the appropriate H2/CO ratio of around 2. In a prior work, we also demonstrated that integrating carbonless heat with combined steam and CO2 reforming of methane is a promising option to produce a syngas with proper H2/CO ratio for Fischer... [more]
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: June | July | August | September | October | November | December