Subjects
Records with Subject: Food & Agricultural Processes
Showing records 1 to 25 of 271. [First] Page: 1 2 3 4 5 Last
Evaluation of a Full-Scale Suspended Sludge Deammonification Technology Coupled with an Hydrocyclone to Treat Thermal Hydrolysis Dewatering Liquors
Pascal Ochs, Benjamin D. Martin, Eve Germain, Zhuoying Wu, Po-Heng Lee, Tom Stephenson, Mark van Loosdrecht, Ana Soares
November 6, 2022 (v1)
Keywords: deammonification, hydrocyclone, partial nitritation/anammox, sidestream, thermal hydrolysis process
Suspended sludge deammonification technologies are frequently applied for sidestream ammonia removal from dewatering liquors resulting from a thermal hydrolysis anaerobic digestion (THP/AD) process. This study aimed at optimizing the operation, evaluate the performance and stability of a full-scale suspended sludge continuous stirred tank reactor (S-CSTR) with a hydrocyclone for anaerobic ammonia oxidizing bacteria (AMX) biomass separation. The S-CSTR operated at a range of nitrogen loading rates of 0.08−0.39 kg N m−3 d−1 displaying nitrogen removal efficiencies of 75−89%. The hydrocyclone was responsible for retaining 56−83% of the AMX biomass and the washout of ammonia oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) was two times greater than AMX. The solid retention time (SRT) impacted on NOB washout, that ranged from 0.02−0.07 d−1. Additionally, it was demonstrated that an SRT of 11−13 d was adequate to wash-out NOB. Microbiome analysis revealed a higher AMX abundance... [more]
Effect of Biochar Prepared from Food Waste through Different Thermal Treatment Processes on Crop Growth
Hang Jia, Haoxi Ben, Fengze Wu
November 6, 2022 (v1)
Keywords: alternative soil, biochar, characterization, crop growth, food waste, hydrothermal conversion
Biochar is generally accepted and increasingly valued in scientific circles as solid products in the thermochemical conversion of biomass, mainly because of its rich carbon content. The purpose of this research is to investigate the impact of biochar from different sources on wheat growth. In particular, this work focused on the effect of different preparation methods and raw material of biochar on the growth of wheat and aim to find a potential soil substitute that can be used for crop cultivation. Two synthetic methods were evaluated: hydrothermal conversion and pyrolysis. The characterization of biochar was determined to explore the impact of its microstructure on wheat growth. The results show that the yield of biochar produced from high-pressure reactor is significantly higher than that obtained by using microwave reactor. For example, the biochar yield obtained through the former is about six times that of the latter when using steamed bread cooked as biomass raw material. In add... [more]
Effect of Storage Conditions and Time on the Polyphenol Content of Wheat Flours
Yanxin Zhang, Francesca Truzzi, Eros D’Amen, Giovanni Dinelli
October 25, 2022 (v1)
Keywords: antioxidant activity, phenolic extracts, storage conditions, storage time, whole wheat flour
Whole wheat flour possesses many nutritional properties because of its abundant bioactive components which are affected by cultivar, but little attention is paid to its relationship with storage conditions. In this study, phenolic extracts of whole wheat flour from four cultivars stored under different conditions (aerated and under vacuum) and different times (0, 2, 4, 8 weeks) were obtained. The total polyphenol (TPC) and flavonoid (TFC) contents, composition of phenolic acids, and antioxidant activities (AA) of phenolic extracts were evaluated. The results showed that Verna exhibited the highest levels of TPC, TFC, and AA for both storage conditions among the four cultivars. Moisture content, TFC, and AA fluctuated during storage. After 8 weeks, the TPC, TFC, and AA decreased with respect to Week 0 in all the cultivars. The TPC losses ranged between 16.39% and 20.88% and TFC losses from 14.08% to 31.18%. The AA losses were approximately 30% from the DPPH assay, but no significant los... [more]
Technologies and Extraction Methods of Polyphenolic Compounds Derived from Pomegranate (Punica granatum) Peels. A Mini Review
Dimitrios Lampakis, Prodromos Skenderidis, Stefanos Leontopoulos
October 13, 2022 (v1)
Keywords: bioactivity, extraction technologies, functional foods, pomegranate peels
The interest in using plant by-product extracts as functional ingredients is continuously rising due to environmental and financial prospects. The development of new technologies has led to the achievement of aqueous extracts with high bioactivity that is preferable due to organic solvents nonuse. Recently, widely applied and emerging technologies, such as Simple Stirring, Pressure-Applied Extraction, Enzymatic Extraction, Ultrasound-Assisted Extraction, Pulsed Electric Fields, High Hydrostatic Pressure, Ohmic Heating, Microwave Assistant Extraction and the use of “green” solvents such as the deep eutectic solvents, have been investigated in order to contribute to the minimization of disadvantages on the extraction of bioactive compounds. This review is focused on bioactive compounds derived from pomegranate (Punica granatum) peels and highlighted the most attractive extraction methods. It is believed that these findings could be a useful tool for the pomegranate juices industry to app... [more]
Cumulative Production of Bioactive Rg3, Rg5, Rk1, and CK from Fermented Black Ginseng Using Novel Aspergillus niger KHNT-1 Strain Isolated from Korean Traditional Food
Jin Kyu Park, Dong Uk Yang, Lakshminarayanan Arunkumar, Yaxi Han, Seung Jin Lee, Muhammad Huzaifa Arif, Jin Feng Li, Yue Huo, Jong Pyo Kang, Van An Hoang, Jong Chan Ahn, Deok Chun Yang, Se Chan Kang
October 13, 2022 (v1)
Keywords: Aspergillus niger, B16BL6 (Murine melanoma) cell line, ginseng, Ginseng Lateral root (GLR), Ginseng Main root (GMR), ginsenosides, human keratinocyte cell line (HaCaT) cells, processing, soybean
Ginseng is an ancient herb widely consumed due to its healing property of active ginsenosides. Recent researchers were explored to increase its absorption and bioavailability of ginsenosides at the metabolic sites, due to its pharmacological activity. The purpose of this study was to investigate the isolation and characteristics of components obtained by a shorter steaming cycle (seven cycles) of white ginseng to fermented black ginseng, using a novel strain of Aspergillus niger KHNT-1 isolated from fermented soybean. The degree of bioactive of Rg3 increased effectively during the steaming process, and biotransformation converted the color towards black along active ginsenosides. Glycol moiety associated with C-3, C-6, or C-20 underwent rapid biotransformation and hydrolysis, such as Rb1, Rb2, Rc, Rd → Rg3, F2, and was converted to CK. Dehydration produces Rg3 → Rk1, Rg5. Rh2 → Rk2; thus, converted fermented black ginseng was solvent-extracted, and the isolated components were identifi... [more]
Apple Fermented Products: An Overview of Technology, Properties and Health Effects
Raquel P. F. Guiné, Maria João Barroca, Teodora Emilia Coldea, Elena Bartkiene, Ofélia Anjos
October 13, 2022 (v1)
Keywords: acetic fermentation, alcoholic fermentation, apple pomace, cider, malolactic fermentation, probiotic beverage, spirit, vinegar
As an easily adapted culture, with overloaded production in some parts of the globe, apples and their by-products are being redirected to pharmaceutical, canning and beverages industries, both alcoholic and non-alcoholic. Fermentation is generally considered to increase the bioavailability of bioactive compounds found in apple, by impacting, through a high degree of changes, the product’s properties, including composition and health-promoting attributes, as well as their sensory profile. Probiotic apple beverages and apple vinegar are generally considered as safe and healthy products by the consumers. Recently, contributions to human health, both in vivo and in vitro studies, of non-alcoholic fermented apple-based products have been described. This review highlighted the advances in the process optimization of apple-based products considering vinegar, cider, pomace, probiotic beverages and spirits’ technologies. The different processing impacts on physical-chemical, nutritional and sen... [more]
Role of Microalgae in the Recovery of Nutrients from Pig Manure
Ana Sánchez-Zurano, Martina Ciardi, Tomás Lafarga, José María Fernández-Sevilla, Ruperto Bermejo, Emilio Molina-Grima
October 12, 2022 (v1)
Keywords: Biomass, biotechnology, photosynthesis, respirometry, Scenedesmus, waste treatment
Animal production inevitably causes the emission of greenhouse gases and the generation of large amounts of slurry, both representing a serious environmental problem. Photosynthetic microorganisms such as microalgae and cyanobacteria have been proposed as alternative strategies to bioremediate agricultural waste while consuming carbon dioxide and producing valuable biomass. The current study assessed the potential of the microalga Scenedesmus sp. to remove nutrients from piggery wastewater (PWW) and the influence of the microalga on the microbial consortia. Maximum N-NH4+ consumption was 55.3 ± 3.7 mg·L−1·day−1 while P-PO43− removal rates were in the range 0.1−1.9 mg·L−1·day−1. N-NH4+ removal was partially caused by the action of nitrifying bacteria, which led to the production of N-NO3−. N-NO3− production values where lower when microalgae were more active. This work demonstrated that the photosynthetic activity of microalgae allows us to increase nutrient removal rates from PWW and t... [more]
Challenges and Solutions for Biogas Production from Agriculture Waste in the Aral Sea Basin
Olimjon Saidmamatov, Inna Rudenko, Urs Baier, Elbek Khodjaniyazov
October 12, 2022 (v1)
Keywords: agriculture, Aral Sea, biogas, digestate, organic waste management, Uzbekistan
Energy plays an essential role in the modern society and can serve as one of the vital parameters of socio-economic development. Despite developments in technology, over three billion persons living in rural parts of the low- and middle-income countries continue to cover their energy needs for cooking through traditional ways by burning biomass resources. This paper as a case study focuses on the Aral Sea region of Uzbekistan, possessing a well-developed agricultural production with high livestock numbers and intensive crop production. The manure of the livestock farms is not used efficiently and the energy supply of the farms depends primarily on centrally produced gas and electricity. Some areas are not yet connected to the gas grid. Agriculture causes huge environmental damages in its current form. The benefit of biogas production would therefore be fivefold: (1) local energy source, (2) mitigation of environmental impacts, (3) reducing CH4-emissions, (4) producing organic fertilize... [more]
Real Wastewater Treatment Using a Moving Bed and Wastewater-Borne Algal−Bacterial Consortia with a Short Hydraulic Retention Time
Donghan Kang, Keugtae Kim
January 24, 2022 (v1)
Keywords: bacterial community, microalgae, moving media, photobioreactor
Algal−bacterial consortium is a promising technology, combined with wastewater treatment plants, because algae produce molecular oxygen for nitrification and organic removal and reduce carbon dioxide emissions. However, algal−bacterial consortia based on suspended growth require a relatively long hydraulic retention time (HRT) of 4 d to 6 d for removal of organic matter and nutrients. For the algal−bacterial consortia in a photobioreactor (PBR) containing a moving bed, the organic matter and nutrient removal and the community structure of algal−bacterial consortia were investigated to determine the performance under a relatively short HRT of 2.5 d. Moving media containing algal−bacterial consortia enhanced the photosynthetic oxygen concentration (0.2 mg dissolved oxygen (DO)·L−1 to 5.9 mg DO·L−1), biochemical oxygen demand removal (88.0% to 97.2%), ammoniacal nitrogen removal (33.8% to 95.3%), total nitrogen removal (61.6% to 87.7%), total phosphate removal (66.4% to 88.7%), algal grow... [more]
Bioactive Compounds Produced by the Accompanying Microflora in Bulgarian Yoghurt
Ivan Ivanov, Kaloyan Petrov, Valentin Lozanov, Iassen Hristov, Zhengjun Wu, Zhenmin Liu, Penka Petrova
January 24, 2022 (v1)
Keywords: Bulgarian yoghurt, cyclic peptides, IPA, Lactobacillus bulgaricus, metagenomics, MLST, PFGE, RAPD, Streptococcus thermophilus
Bulgarian yoghurt is associated with health benefits and longevity of consumers. The specific microflora producing bioactive metabolites is responsible for this effect. The present study examines the biodiversity in four homemade yoghurts from regions containing endemic microflora. Metagenome sequencing indicated Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus were predominant in all samples. In addition, yoghurts contained accompanying lactic acid bacteria (LAB) including Lacticaseibacillus paracasei, Lb. helveticus, Limosilactobacillus fermentum, Lb. rhamnosus, Lactococcus lactis, Pediococcus acidilactici, Leuconostoc mesenteroides, and Leuc. pseudomesenteroides. A negligible amount of pollutant strains was found. Twenty-four LAB strains were isolated from the yoghurts and identified. Lb. delbrueckii subsp. bulgaricus strains were genotyped by randomly amplified polymorphic DNA−PCR (RAPD), multi-locus sequence typing (MLST), and pulse field gel electrophore... [more]
Chitosan Plasma Chemical Processing in Beam-Plasma Reactors as a Way of Environmentally Friendly Phytostimulants Production
Tatiana Vasilieva, Oscar Goñi, Patrick Quille, Shane O’Connell, Dmitry Kosyakov, Semen Shestakov, Nikolay Ul’yanovskii, Michael Vasiliev
January 24, 2022 (v1)
Keywords: chitooligosaccharides, electron-beam plasma, plant biostimulants, plasma chemical processing
A novel technique of phytoactive water-soluble chitooligosaccharide (COS) production in low-temperature plasma is described. Design, operation, and control of plasma chemical reactors used to produce COS from the powder of high molecular weight chitosan are presented. The electron beam plasma is strongly non-equilibrium and chemically active; plasma was excited by injecting the scanning electron beam into reaction volume filled with aerosol, containing oxygen and chitosan powder. Plasma chemical processes, responsible for the raw chitosan destruction and techniques of these processes to obtain control of products of optimal molecular weight, are considered. COS, in amounts sufficient for laboratory tests with some plants, were produced. Tests showed that the addition of COS into the liquid growing medium at 0.25 and 1 mg/mL stimulates root growth in Arabidopsis thaliana seedlings (Col-0) by up to 40%, with respect to control plants. Foliar application of these COS formulations at 0.25... [more]
A Study of Factors Affecting Iron Uptake from a Functionalized Hibiscus Beverage
Ade O Oyewole, Levente L Diosady
October 21, 2021 (v1)
Keywords: Hibiscus sabdariffa, iron bioaccessibility, iron deficiency
Iron deficiency accounts for over 50% of the world’s anaemia burden and it is widely prevalent in low- and middle-income countries. In response to the menace of iron deficiency in Sub-Saharan Africa, a commonly consumed beverage, the vibrantly red aqueous extract of the calyces of Hibiscus sabdariffa, has been functionalized. To determine the conditions that could potentially result in the most iron uptake by consumers of the functional beverage, the present study evaluated the effect of the factors that could influence the bioaccessibility of its iron content in the gastrointestinal (GI) tract.

Hibiscus beverage was fortified to contain, 6 mg iron per 250 mL of the beverage, by adding O.358 mM solution of ferrous sulphate salt to top up the native iron content determined to be 0.93±0.19 mg/ 250 mL. Also, a competing chelating agent - disodium EDTA was added to increase the bioaccessibility of iron from the beverage. Previous results showed the feasibility of releasing iron from th... [more]
Formulation and Stability of Cellulose-Based Delivery Systems of Raspberry Phenolics
Josipa Vukoja, Ivana Buljeta, Anita Pichler, Josip Šimunović, Mirela Kopjar
October 14, 2021 (v1)
Keywords: anthocyanins, antioxidant activity, cellulose/raspberry encapsulates, inhibition of α-amylase, phenolics
Encapsulation of bioactives is a tool to prepare their suitable delivery systems and ensure their stability. For this purpose, cellulose was selected as carrier of raspberry juice phenolics and freeze-dried cellulose/raspberry encapsulates (C/R_Es) were formulated. Influence of cellulose amount (2.5%, 5%, 7.5% and 10%) and time (15 or 60 min) on the complexation of cellulose and raspberry juice was investigated. Obtained C/R_Es were evaluated for total phenolics, anthocyanins, antioxidant activity, inhibition of α-amylase and color. Additionally, encapsulation was confirmed by FTIR. Stability of C/R_Es was examined after 12 months of storage at room temperature. Increasing the amount of cellulose during formulation of C/R_E from 2.5% to 10%, resulted in the decrease of content of total phenolics and anthocyanins. Additionally, encapsulates formulated by 15 min of complexation had a higher amount of investigated compounds. This tendency was retained after storage. The highest antioxidan... [more]
Influence of Processing Parameters on Phenolic Compounds and Color of Cabernet Sauvignon Red Wine Concentrates Obtained by Reverse Osmosis and Nanofiltration
Ivana Ivić, Mirela Kopjar, Lidija Jakobek, Vladimir Jukić, Suzana Korbar, Barbara Marić, Josip Mesić, Anita Pichler
October 14, 2021 (v1)
Keywords: Cabernet Sauvignon concentrate, nanofiltration, phenolic compounds, reverse osmosis
In this study, Cabernet Sauvignon red wine was subjected to reverse osmosis and nanofiltration processes at four different pressures (25, 35, 45, and 55 bar) and two temperature regimes (with and without cooling). The aim was to obtain concentrates with a higher content of phenolic compounds and antioxidant activity and to determine the influence of two membrane types (Alfa Laval RO98pHt M20 for reverse osmosis and NF M20 for nanofiltration) and different operating conditions on phenolics retention. Total polyphenol, flavonoid, monomeric anthocyanin contents, and antioxidant activity were determined spectrophotometrically. Flavan-3-ols and phenolic acids were analyzed on a high-performance liquid chromatography system and sample colour was measured by chromometer. The results showed that the increase in applied pressure and decrease in retentate temperature were favorable for higher phenolics retention. Retention of individual compounds depended on their chemical structure, membrane pr... [more]
State-of-the-Art Char Production with a Focus on Bark Feedstocks: Processes, Design, and Applications
Ali Umut Şen, Helena Pereira
October 14, 2021 (v1)
Keywords: bark, charcoal, gasification, hydrothermal carbonization, pyrolysis, torrefaction
In recent years, there has been a surge of interest in char production from lignocellulosic biomass due to the fact of char’s interesting technological properties. Global char production in 2019 reached 53.6 million tons. Barks are among the most important and understudied lignocellulosic feedstocks that have a large potential for exploitation, given bark global production which is estimated to be as high as 400 million cubic meters per year. Chars can be produced from barks; however, in order to obtain the desired char yields and for simulation of the pyrolysis process, it is important to understand the differences between barks and woods and other lignocellulosic materials in addition to selecting a proper thermochemical method for bark-based char production. In this state-of-the-art review, after analyzing the main char production methods, barks were characterized for their chemical composition and compared with other important lignocellulosic materials. Following these steps, previ... [more]
Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production
Laura Acosta, Dahiana Galeano-Caro, Oscar E. Medina, Farid B. Cortés, Camilo A. Franco
October 14, 2021 (v1)
Keywords: activated carbon, Adsorption, Catalysis, coffee residue, crude oil, magnetite nanoparticles
This work focused on evaluating the adsorptive removal of crude oil using a nano-intermediate based on magnetite nanoparticles supported on activated carbon synthesized from spent coffee grounds and the subsequent catalytic oil decomposition to recover by-products and regenerate the support material. The magnetite nanoparticles were synthesized by the co-precipitation method and were used as active phases on prepared activated carbon. The amount of crude oil adsorbed was determined by adsorption isotherms. In addition, dynamic tests were performed on a packed bed to evaluate the efficiency of the removal process. Thermogravimetric analysis and mass spectrometry were used to evaluate the catalytic powder and the quantification of by-products. Contrasting the results with commercial carbon, the one synthesized from the coffee residue showed a greater affinity for the oil. Likewise, the adsorption capacity increased by doping activated carbon with magnetite nanoparticles, obtaining an eff... [more]
Identification of Penicillium verrucosum, Penicillium commune, and Penicillium crustosum Isolated from Chicken Eggs
Soňa Demjanová, Pavlina Jevinová, Monika Pipová, Ivana Regecová
October 11, 2021 (v1)
Keywords: colony morphology, creatine, egg, Ehrlich reaction, mold, PCR, PCR-ITS-RFLP, Penicillium, restriction enzyme
Penicillium species belong to main causative agents of food spoilage leading to significant economic losses and potential health risk for consumers. These fungi have been isolated from various food matrices, including table eggs. In this study, both conventional Polymerase Chain Reaction (PCR) and Polymerase Chain Reaction-Internal Transcribed Spacer-Restriction Fragment Length Polymorphism (PCR-ITS-RFLP) methods were used for species identification of Penicillium (P.) spp. isolated from the eggshells of moldy chicken eggs. Seven restriction endonucleases (Bsp1286I, XmaI, HaeIII, HinfI, MseI, SfcI, Hpy188I) were applied to create ribosomal restriction patterns of amplified ITS regions. To identify P. verrucosum, P. commune, and P. crustosum with the help of conventional PCR assay, species-specific primer pairs VERF/VERR, COMF/COMR, and CRUF/CRUR were designed on the base of 5.8 subunit-Internal Transcribed Spacer (5.8S-ITS) region. Altogether, 121 strains of microscopic filamentous fun... [more]
Demineralization of Food Waste Biochar for Effective Alleviation of Alkali and Alkali Earth Metal Species
Yoonah Jeong, Ye-Eun Lee, Dong-Chul Shin, Kwang-Ho Ahn, Jinhong Jung, I-Tae Kim
September 22, 2021 (v1)
Keywords: AAEM, ash, biochar, demineralization, food waste, pyrolysis
Ash-related issues from a considerable amount of alkali and alkaline earth metal species in biochar are major obstacles to the widespread application of biomass in thermoelectric plants. In this study, food wastes were converted into biochar through pyrolysis at 450 °C or 500 °C and four different demineralization approaches, using deionized water, citric acid, nitric acid, and CO2 saturated water. The chemical properties of the resulting biochars were investigated, including proximate analysis, concentrations of inorganic species in biochar and ash, and the crystalline structure. All demineralization treatments produced food waste biochar with sufficient calorific value (>4000 kcal/kg) and a chlorine concentration <0.5%. Among the inorganic species in biochar, Na and K exhibited a significantly higher removal rate through demineralization, which ranged from 54.1%−85.6% and 53.6%−89.9%, respectively; the removal rates of Ca and Mg were lower than 50.0%. The demineralization method w... [more]
Wheat Grinding Process with Low Moisture Content: A New Approach for Wholemeal Flour Production
Waleed H. Hassoon, Dariusz Dziki, Antoni Miś, Beata Biernacka
September 21, 2021 (v1)
Keywords: drying, grinding energy, particle size, wheat dough, wholemeal flour
The objective of this study was to determine the grinding characteristics of wheat with a low moisture content. Two kinds of wheat—soft spelt wheat and hard Khorasan wheat—were dried at 45 °C to reduce the moisture content from 12% to 5% (wet basis). Air drying at 45 °C and storage in a climatic chamber (45 °C, 10% relative humidity) were the methods used for grain dehydration. The grinding process was carried out using a knife mill. After grinding, the particle size distribution, average particle size and grinding energy indices were determined. In addition, the dough mixing properties of wholemeal flour dough were studied using a farinograph. It was observed that decreasing the moisture content in wheat grains from 12% to 5% made the grinding process more effective. As a result, the average particle size of the ground material was decreased. This effect was found in both soft and hard wheat. Importantly, lowering the grain moisture led to about a twofold decrease in the required grin... [more]
Torrefaction of Woody and Agricultural Biomass: Influence of the Presence of Water Vapor in the Gaseous Atmosphere
María González Martínez, Estéban Hélias, Gilles Ratel, Sébastien Thiéry, Thierry Melkior
September 21, 2021 (v1)
Keywords: Biomass, solid mass loss, TGA, torrefaction, water vapor
Biomass preheating in torrefaction at an industrial scale is possible through a direct contact with the hot gases released. However, their high water-content implies introducing moisture (around 20% v/v) in the torrefaction atmosphere, which may impact biomass thermochemical transformation. In this work, this situation was investigated for wheat straw, beech wood and pine forest residue in torrefaction in two complementary experimental devices. Firstly, experiments in chemical regime carried out in a thermogravimetric analyzer (TGA) showed that biomass degradation started from lower temperatures and was faster under a moist atmosphere (20% v/v water content) for all biomass samples. This suggests that moisture might promote biomass components’ degradation reactions from lower temperatures than those observed under a dry atmosphere. Furthermore, biomass inorganic composition might play a role in the extent of biomass degradation in torrefaction in the presence of moisture. Secondly, tor... [more]
Effect of Blanching on Enzyme Inactivation, Physicochemical Attributes and Antioxidant Capacity of Hot-Air Dried Pomegranate (Punica granatum L.) Arils (cv. Wonderful)
Adegoke Olusesan Adetoro, Umezuruike Linus Opara, Olaniyi Amos Fawole
September 21, 2021 (v1)
Keywords: antioxidants, colour, PCA, peroxidase, rehydration, texture
Blanch-assisted hot-air drying of pomegranate arils with blanching treatments 90 °C for 30 s, 100 °C for 60 s, and unblanched (control) arils were investigated. Effects of blanching on enzyme inactivation (polyphenol oxidase and peroxidse), colour, texture, and other qualities of dried arils were discussed. The hot-air drying conditions were 60 °C, 19.6% relative humidity, and 1.0 m s−1 air velocity. Results showed that blanching reduced enzyme activity by 76% and 68% for blanched arils treated at 90 °C for 30 s and 100 °C for 60 s, respectively, compared to unblanched arils. With regard to the total colour difference (TCD), unblanched arils were 20.9% and 16.6% higher than blanched arils treated at 90 °C for 30 s and 100 °C for 60 s, respectively. Furthermore, the total soluble solids (TSS) for unblanched aril increased significantly from 16.1 to 24.9 °Brix after drying, followed by arils treated at 90 °C for 30 s and 100 °C for 60 s (21.4; 18.5 °Brix), respectively. Among the blanchi... [more]
Microbial Production and Enzymatic Biosynthesis of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum FNCC 260 Isolated from Indonesian Fermented Foods
Ida Bagus Agung Yogeswara, Suwapat Kittibunchakul, Endang Sutriswati Rahayu, Konrad J. Domig, Dietmar Haltrich, Thu Ha Nguyen
September 21, 2021 (v1)
Keywords: GABA, glutamate decarboxylase, Indonesian fermented foods, L. plantarum, lactic acid bacteria
In the present study, we isolated and screened thirty strains of GABA (γ-aminobutyric acid)-producing lactic acid bacteria (LAB) from traditional Indonesian fermented foods. Two strains were able to convert monosodium glutamate (MSG) to GABA after 24 h of cultivation at 37 °C based on thin layer chromatography (TLC) screening. Proteomic identification and 16S rDNA sequencing using MALDI-TOF MS identified the strain as Lactobacillus plantarum designated as L. plantarum FNCC 260 and FNCC 343. The highest yield of GABA production obtained from the fermentation of L. plantarum FNCC 260 was 809.2 mg/L of culture medium after 60 h of cultivation. The supplementation of 0.6 mM pyridoxal 5’-phosphate (PLP) and 0.1 mM pyridoxine led to the increase in GABA production to 945.3 mg/L and 969.5 mg/L, respectively. The highest GABA production of 1226.5 mg/L of the culture medium was obtained with 100 mM initial concentration of MSG added in the cultivation medium. The open reading frame (ORF) of 141... [more]
Modifying Effects of Physical Processes on Starch and Dietary Fiber Content of Foodstuffs
Róbert Nagy, Endre Máthé, János Csapó, Péter Sipos
September 16, 2021 (v1)
Keywords: dietary fibers, physical food processing, starch, technological properties of carbohydrates
Carbohydrates are one of the most important nutrients in human consumption. The digestible part of carbohydrates has a significant role in maintaining the energy status of the body and the non-digestible parts like dietary fibers have specific nutritional functions. One of the key issues of food processing is how to influence the technological and nutritional properties of carbohydrates to meet modern dietary requirements more effectively, considering particularly the trends in the behavior of people and food-related health issues. Physical processing methods have several advantages compared to the chemical methods, where chemical reagents, such as acids or enzymes, are used for the modification of components. Furthermore, in most cases, these is no need to apply them supplementarily in the technology, only a moderate modification of current technology can result in significant changes in dietary properties. This review summarizes the novel results about the nutritional and technologic... [more]
Optimising Tropical Fruit Juice Quality Using Thermosonication-Assisted Extraction via Blocked Face-Centered Composite Design
Norazlin Abdullah, Nyuk Ling Chin
August 2, 2021 (v1)
Keywords: guava, pomelo, response surface methodology, soursop, ultrasound
Extraction of tropical fruit juice using simple, efficient, and environmentally friendly technologies is gaining importance to produce high quality juices. Juice from pink-fleshed guava, pink-fleshed pomelo, and soursop was extracted using direct and indirect thermosonication methods by varying intensity, time, and temperature, and compared to those extracted using water bath incubation. Improvised models of juice yield, ascorbic acid, and total soluble solids responses were generated by eliminating insignificant model terms of the factors in full quadratic model using backward eliminating procedure. Main effects, 3D, or 4D plots for each response were developed based on factors that influenced the response. Results showed that the best extraction method for guava and pomelo juices were within indirect thermosonication method of 1 kW, 55 °C and 30 min, and 2.5 kW, 54 °C and 23 min, respectively. Direct thermosonication method at 10% amplitude, 55 °C for 2 to 10 min was more suitable fo... [more]
The Effects of Biofertilizers on Growth, Soil Fertility, and Nutrients Uptake of Oil Palm (Elaeis Guineensis) under Greenhouse Conditions
Aaronn Avit Ajeng, Rosazlin Abdullah, Marlinda Abdul Malek, Kit Wayne Chew, Yeek-Chia Ho, Tau Chuan Ling, Beng Fye Lau, Pau Loke Show
July 29, 2021 (v1)
Keywords: biofertilizers, chemical fertilizer, oil palm seedlings nursery, plant growth promoting rhizobacteria
The full dependency on chemical fertilizers in oil palm plantation poses an enormous threat to the ecosystem through the degradation of soil and water quality through leaching to the groundwater and contaminating the river. A greenhouse study was conducted to test the effect of combinations of biofertilizers with chemical fertilizer focusing on the soil fertility, nutrient uptake, and the growth performance of oil palms seedlings. Soils used were histosol, spodosol, oxisol, and ultisol. The three treatments were T1: 100% chemical fertilizer (NPK 12:12:17), T2: 70% chemical fertilizer + 30% biofertilizer A (CF + BFA), and T3: 70% + 30% biofertilizer B (CF + BFB). T2 and T3, respectively increased the growth of oil palm seedlings and soil nutrient status but seedlings in oxisol and ultisol under T3 had the highest in almost all parameters due to the abundance of more efficient PGPR. The height of seedlings in ultisol under T3 was 22% and 17% more than T2 and T1 respectively, with enhance... [more]
Showing records 1 to 25 of 271. [First] Page: 1 2 3 4 5 Last
[Show All Subjects]