Records with Keyword: Model Predictive Control
Showing records 1 to 25 of 203. [First] Page: 1 2 3 4 5 Last
An ECMS Based on Model Prediction Control for Series Hybrid Electric Mine Trucks
Jichao Liu, Yanyan Liang, Zheng Chen, Hai Yang
May 24, 2023 (v1)
Keywords: equivalent consumption minimization strategy, Model Predictive Control, recurrent neural network, series hybrid electric mine trucks
This paper presents an equivalent consumption minimization strategy (ECMS) based on model predictive control for series hybrid electric mine trucks (SHE-MTs), the objective of which is to minimize fuel consumption. Two critical works are presented to achieve the goal. Firstly, to gain the real-time speed trajectory on-line, a speed prediction model is established by utilizing a recurrent neural network (RNN). Specifically, a hybrid optimization algorithm based on the genetic algorithm (GA) and the particle swarm optimization algorithm (PSOA) is used to enhance the prediction precision of the speed prediction model. Then, on this basis, an ECMS based on MPC (ECMS-MPC) is proposed. In this process, to improve the real-time and working condition adaptability of the ECMS-MPC, the power-optimal fuel consumption mapping model of the range extender is established, and the equivalent factor (EF) is real-time adjusted by means of the PSOA. Finally, taking a cement mining road as the research ob... [more]
Online Adaptive Parameter Estimation of a Finite Control Set Model Predictive Controlled Hybrid Active Power Filter
Silvia Costa Ferreira, João Gabriel Luppi Foster, Robson Bauwelz Gonzatti, Rondineli Rodrigues Pereira, Guilherme Gonçalves Pinheiro, Bruno P. Braga Guimarães
May 23, 2023 (v1)
Keywords: dynamic reactive power compensation, finite control set model predictive control, hybrid active power filter, LCL-filter, Model Predictive Control, parameter estimation
This paper presents a novel strategy for online parameter estimation in a hybrid active power filter (HAPF). This HAPF makes use of existing capacitor banks which it combines with an active power filter (APF) in order to dynamically compensate reactive power. The equipment is controlled with finite control set model predictive control (FCS-MPC) due to its already well-known fast dynamic response. The HAPF model is similar to a grid-connected LCL-filtered converter, so the direct control of the HAPF current can cause resonances and instabilities. To solve this, indirect control, using the capacitor voltage and the inverter-side current, is applied in the cost function, which creates high dependency between the system parameters and the equipment capability to compensate the load reactive power. This dependency is evaluated by simulations, in which the capacitor bank reactance is shown to be the most sensitive parameter, and, thus, responsible for inaccuracies in the FCS-MPC references.... [more]
Predictive Control Strategy for Continuous Production Systems: A Comparative Study with Classical Control Approaches Using Simulation-Based Analysis
Amelia Chindrus, Dana Copot, Constantin-Florin Caruntu
April 28, 2023 (v1)
Keywords: continuous manufacturing, cyber-physical system, linear quadratic regulator, Model Predictive Control, proportional-integral-derivative controller
Due to today’s technological development and information progress, an increasing number of physical systems have become interconnected and linked together through communication networks, thus resulting in Cyber-Physical Systems (CPSs). Continuous manufacturing, which involves the manufacture of products without interruption, has become increasingly important in many industries, including the pharmaceutical and chemical industries. CPSs can be used to control and monitor the production process, which is essential in enabling continuous manufacturing. This paper is focused on the modeling and control of physical systems required in tablet production using dry granulation. Tablets are a type of oral dosage form that is commonly used in the pharmaceutical industry. They are solid, compressed forms of medication that are formulated to release the active ingredients in a manner that allows for optimal absorption and efficacy. Thus, a model predictive control (MPC) strategy is applied to a pl... [more]
RNN-LSTM-Based Model Predictive Control for a Corn-to-Sugar Process
Jiaqi Meng, Chengbo Li, Jin Tao, Yi Li, Yi Tong, Yu Wang, Lei Zhang, Yachao Dong, Jian Du
April 28, 2023 (v1)
Keywords: corn-to-sugar process, data-driven method, Model Predictive Control, RNN-LSTM
The corn-to-sugar process is difficult to control automatically because of the complex physical and chemical phenomena involved. Because the RNN-LSTN model has been shown to handle long-term time dependencies well, this article focused on the design of a model predictive control system based on this machine learning model. Based on the historical data, we first reduced the input variable dimension through data preprocessing, data dimension reduction, sensitivity analysis, etc., and then the RNN-LSTM model, with these identified key sites as inputs, and the dextrose equivalent value as the output, was constructed. Then, through model predictive control using the locally linearized RNN-LSTM as the predictive model, the objective value of the dextrose equivalent was successfully controlled at the target value by our simulation study, in different situations of setpoint changes and disturbances. This showed the potential of applying RNN-LSTM-Based model predictive control in a corn-to-suga... [more]
Research on Model Predictive Control of a 130 t/h Biomass Circulating Fluidized Bed Boiler Combustion System Based on Subspace Identification
Heng Wei, Shanjian Liu, Jianjie He, Yinjiao Liu, Guanshuai Zhang
April 28, 2023 (v1)
Keywords: Biomass, circulating fluidized bed, combustion system, dynamic simulations, Model Predictive Control, subspace identification
The structure of large biomass circulating fluidized bed (BCFB) boilers is complex, and control schemes for coal-fired boilers cannot be simply applied to biomass boilers. Multivariable coupling and operational disturbances are also common issues. In this study, a state space model of a 130 t/h BCFB boiler was established under different operating conditions. Using the 100% operating point as an example, a model predictive controller was designed and tested under output disturbance and input disturbance conditions. The results show that the predictive control system designed in this study has a fast response speed and good stability.
An MPC-Sliding Mode Cascaded Control Architecture for PV Grid-Feeding Inverters
Alessandro Palmieri, Alessandro Rosini, Renato Procopio, Andrea Bonfiglio
April 25, 2023 (v1)
Keywords: microgrid, Model Predictive Control, photovoltaic, Renewable and Sustainable Energy, sliding mode control
The primary regulation of photovoltaic (PV) systems is a current matter of research in the scientific community. In Grid-Feeding operating mode, the regulation aims to track the maximum power point in order to fully exploit the renewable energy sources and produce the amount of reactive power ordered by a hierarchically superior control level or by the local Distribution System Operator (DSO). Actually, this task is performed by Proportional−Integral−Derivative (PID)-based regulators, which are, however, affected by major drawbacks. This paper proposes a novel control architecture involving advanced control theories, like Model Predictive Control (MPC) and Sliding Mode (SM), in order to improve the overall system performance. A comparison with the conventional PID-based approach is presented and the control theories that display a better performance are highlighted.
An MPC Approach for Grid-Forming Inverters: Theory and Experiment
Alessandro Labella, Filip Filipovic, Milutin Petronijevic, Andrea Bonfiglio, Renato Procopio
April 25, 2023 (v1)
Keywords: grid-forming inverter, microgrid, Model Predictive Control, primary control
Microgrids (MGs) interest is growing very fast due to the environment urgency and their capability to integrate renewable energy in a flexible way. In particular, islanded MGs in which distributed energy resources (DERs) are connected to the infrastructure with power electronic converters have attracted the interest of many researchers of both academia and industry because management, control and protection of such systems is quite different from the case of traditional networks. According to their operation mode, MGs that power electronic converters can be divided into grid-forming, grid-feeding and grid-supporting inverters. In particular, grid forming inverters are asked to impose voltage and frequency in the MG. This paper aims to propose a model predictive control (MPC) based approach for grid-forming inverters in an islanded MG. The MPC strategy is implemented because of its capability to define the optimal control actions that contemporarily track the desired reference signals a... [more]
Model Predictive Control with Modulator Applied to Grid Inverter under Voltage Distorted
Angelo Lunardi, Eliomar R. Conde D, Jefferson de Assis, Darlan A. Fernandes, Alfeu J. Sguarezi Filho
April 24, 2023 (v1)
Keywords: distorted voltage, distributed generation, grid current control, inverter connected to the grid, Model Predictive Control
This research paper presents a model of predictive control with a modulator for the inverter linked to the electrical grid, using the stationary reference frame and operating under grid distorted voltage. The stationary reference frame model for the system is obtained in its fundamental frequency and then the model predictive technique is implemented, which predicts the system actions using the obtained system model without the need of any other harmonic consideration. The controller calculates the voltage vector of the inverter through the minimization of the cost function. Thus, the proposal demonstrates, through experiments, its positive results regarding the low impact of the distorted voltage in the grid current without using any harmonic consideration on the model. Experimental results and comparisons carried out endorse the proposal of this work.
A Novel Power Sharing Strategy Based on Virtual Flux Droop and Model Predictive Control for Islanded Low-Voltage AC Microgrids
Saheb Khanabdal, Mahdi Banejad, Frede Blaabjerg, Nasser Hosseinzadeh
April 24, 2023 (v1)
Keywords: droop control, microgrid, Model Predictive Control, power sharing, remote community energy resilience, virtual flux
The droop control scheme based on Q − ω and P − V characteristics is conventionally employed to share the load power among sources in an islanded low-voltage microgrid with resistive line impedances. However, it suffers from poor active power sharing, and is vulnerable to sustained deviations in frequency and voltage. Therefore, accurate power sharing and maintaining the frequency and voltage in the desired ranges are challenging. This paper proposes a novel microgrid control strategy to address these issues. The proposed strategy consists of a virtual flux droop and a model predictive control, in which the virtual flux is the time integral of the voltage. Firstly, the novel virtual flux droop control is proposed to accurately control the power sharing among DGs. Then, the model predictive flux control is employed to generate the appropriate switching signals. The proposed strategy is simple without needing multiple feedback control loops. In addition, pulse width modulation is not req... [more]
Proportional Usage of Low-Level Actions in Model Predictive Control for Six-Phase Electric Drives
Angel Gonzalez-Prieto, Ignacio Gonzalez-Prieto, Mario J. Duran, Juan Carrillo-Rios, Juan J. Aciego, Pedro Salas-Biedma
April 24, 2023 (v1)
Subject: Other
Keywords: Model Predictive Control, multi-vectorial control scheme, multiphase induction machines, virtual voltage vector
Finite Control-Set Model Predictive Control (FCS-MPC) appears as an interesting alternative to regulate multiphase electric drives, thanks to inherent advantages such as its capability to include new restrictions and fast-transient response. Nevertheless, in industrial applications, FCS-MPC is typically discarded to control multiphase motors because the absence of a modulation stage produces a high harmonic content. In this regard, multi-vectorial approaches are an innovative solution to improve the electric drive performance taking advantage of the implicit modulator flexibility of Model Predictive Control (MPC) strategies. This work proposes the definition of a new multi-vectorial set of control actions formed by a couple of adjacent large voltage vectors and a null voltage vector with an adaptative application ratio. The combination of two large voltage vectors provides minimum x-y current injection whereas the application of a null voltage vector reduces the active voltage producti... [more]
MPC Based Energy Management System for Hosting Capacity of PVs and Customer Load with EV in Stand-Alone Microgrids
Kyung-Sang Ryu, Dae-Jin Kim, Heesang Ko, Chang-Jin Boo, Jongrae Kim, Young-Gyu Jin, Ho-Chan Kim
April 21, 2023 (v1)
Keywords: energy storage system, hosting capacity, Matlab/Simulink, Model Predictive Control, stand-alone microgrid
This paper presents the improvements of the hosting capacity of photovoltaics (PVs) and electric vehicles (EVs) in a stand-alone microgrid (MG) with an energy storage system (ESS) by consider-ing a model predictive control (MPC) based energy management system. The system is configured as an MG, including PVs, an ESS, a diesel generator (DG), and several loads with EVs. The DG is controlled to operate at rated power and the MPC algorithm is used in a stand-alone MG, which supplies the energy demanded for several loads with EVs. The hosting capacity of the load in-cluding the EV and PVs can be expanded through the ESS to the terminal node of the microgrid. In this case, the PVs and the load can be connected in excess of the capacity of the diesel genera-tor, and each bus in the feeder complies with the voltage range required by the grid. The effec-tiveness of the proposed algorithm to resolve the hosting capacity is demonstrated by numerical simulations.
Field-Ready Implementation of Linear Economic Model Predictive Control for Microgrid Dispatch in Small and Medium Enterprises
Tobias Kull, Bernd Zeilmann, Gerhard Fischerauer
April 21, 2023 (v1)
Keywords: cyber-physical system, energy transition, hardware-in-the-loop, Model Predictive Control, programmable logic controller, smart energy systems
The increasing share of distributed renewable energy resources (DER) in the grid entails a paradigm shift in energy system operation demanding more flexibility on the prosumer side. In this work we show an implementation of linear economic model predictive control (MPC) for flexible microgrid dispatch based on time-variable electricity prices. We focus on small and medium enterprises (SME) where information and communications technology (ICT) is available on an industrial level. Our implementation uses field devices and is evaluated in a hardware-in-the-loop (HiL) test bench to achieve high technological maturity. We use available forecasting techniques for power demand and renewable energy generation and evaluate their influence on energy system operation compared to optimal operation under perfect knowledge of the future and compared to a status-quo operation strategy without control. The evaluation scenarios are based on an extensive electricity price analysis to increase representa... [more]
MPC Based Coordinated Active and Reactive Power Control Strategy of DFIG Wind Farm with Distributed ESSs
Hesong Cui, Xueping Li, Gongping Wu, Yawei Song, Xiao Liu, Derong Luo
April 21, 2023 (v1)
Keywords: DFIG wind turbines, distributed energy storage systems, Model Predictive Control
The ESS is considered as an effective tool for enhancing the flexibility and controllability of a wind farm, and the optimal control scheme of a wind farm with distributed ESSs is vital to the stable operation of wind power generation. In this paper, a coordinated active and reactive power control strategy based on model predictive control (MPC) is proposed for doubly fed induction generator (DFIG)-based wind farm (WF) with distributed energy storage systems (ESSs). The proposed control scheme coordinates the active and reactive power output among DFIG wind turbines (WTs), grid-side converters (GSCs), and distributed ESSs inside the WF, and the aim is to decrease fatigue loads of WTs, make the WT terminal voltage inside the extent practicable, and take the WF economic operation into consideration. Moreover, the best reactive power references of DFIG stator and GSC are produced independently based on their dynamics. At last, the control scheme generates optimal power references for all... [more]
Vector Modulation-Based Model Predictive Current Control with Filter Resonance Suppression and Zero-Current Switching Sequence for Two-Stage Matrix Converter
Zhengfei Di, Demin Xu, Kehan Zhang
April 20, 2023 (v1)
Keywords: input filter resonance suppression, Model Predictive Control, two-stage matrix converter, vector synthesis, zero-current switching strategy
This paper proposes a novel model predictive current control scheme for two-stage matrix converter. The switching frequency is kept constant by fixing the switching instant. The control strategy achieves to control source reactive power in the input side and output currents in the output side. In addition, the advantage of the proposed strategy compared with conventional model predictive control is firstly proved using the principle of vector synthesis and the law of sines in the vector distribution area. Moreover, a zero-current switching sequence is proposed and implemented to insure zero-current switching operations and reduce the switching losses. Furthermore, in order to suppress the input filter resonance, which is easier to be inspired by the model predictive control, compared with traditional control strategies, an innovative active damping technique is proposed and implemented. Finally, both simulation and experiment are implemented to verify the performance of the proposed st... [more]
A Novel Predictive Control Method with Optimal Switching Sequence and Filter Resonance Suppression for Two-Stage Matrix Converter
Zhengfei Di, Demin Xu, Luca Tarisciotti, Pat Wheeler
April 20, 2023 (v1)
Keywords: input filter resonance suppression, Model Predictive Control, optimal switching strategy, two-stage matrix converter, vector modulation
This paper proposes a vector modulation-based model predictive current control strategy for a two-stage matrix converter. The switching frequency is kept constant by fixing the switching instantly. The control scheme controls the source reactive power on the input side and output currents on the output side. Besides, the advantage of the proposed strategy compared with conventional model predictive control is firstly proved using the principle of vector synthesis and the law of sines in the vector distribution area. Moreover, to ensure zero-current switching operations and reduce the switching losses, an optimal switching sequence is proposed and implemented. Furthermore, considering that the input filter resonance is easier to be inspired by the model predictive control, compared with conventional linear control strategies, an innovative active damping technique is proposed to suppress the input filter resonance. To assess the performance of the proposed method, simulation and experim... [more]
A New Model Predictive Control Method for Eliminating Hydraulic Oscillation and Dynamic Hydraulic Imbalance in a Complex Chilled Water System
Yang Yuan, Neng Zhu, Haizhu Zhou, Hai Wang
April 20, 2023 (v1)
Keywords: chilled water system, high-rise building, hydraulic oscillation, Model Predictive Control, pipe network
To enhance the energy performance of a central air-conditioning system, an effective control method for the chilled water system is always essential. However, it is a real challenge to distribute exact cooling energy to multiple terminal units in different floors via a complex chilled water network. To mitigate hydraulic imbalance in a complex chilled water system, many throttle valves and variable-speed pumps are installed, which are usually regulated by PID-based controllers. Due to the severe hydraulic coupling among the valves and pumps, the hydraulic oscillation phenomena often occur while using those feedback-based controllers. Based on a data-calibrated water distribution model which can accurately predict the hydraulic behaviors of a chilled water system, a new Model Predictive Control (MPC) method is proposed in this study. The proposed method is validated by a real-life chilled water system in a 22-floor hotel. By the proposed method, the valves and pumps can be regulated saf... [more]
Model Predictive Control for the Energy Management in a District of Buildings Equipped with Building Integrated Photovoltaic Systems and Batteries
Maria C. Fotopoulou, Panagiotis Drosatos, Stefanos Petridis, Dimitrios Rakopoulos, Fotis Stergiopoulos, Nikolaos Nikolopoulos
April 20, 2023 (v1)
Keywords: battery energy storage systems, district level, energy community, energy management, Model Predictive Control, Optimization, vertical photovoltaics
This paper introduces a Model Predictive Control (MPC) strategy for the optimal energy management of a district whose buildings are equipped with vertically placed Building Integrated Photovoltaic (BIPV) systems and Battery Energy Storage Systems (BESS). The vertically placed BIPV systems are able to cover larger areas of buildings’ surfaces, as compared with conventional rooftop PV systems, and reach their peak of production during winter and spring, which renders them suitable for energy harvesting especially in urban areas. Driven by both these relative advantages, the proposed strategy aims to maximize the district’s autonomy from the external grid, which is achieved through the cooperation of interactive buildings. Therefore, the major contribution of this study is the management and optimal cooperation of a group of buildings, each of which is equipped with its own system of vertical BIPV panels and BESS, carried out by an MPC strategy. The proposed control scheme consists of thr... [more]
Model Predictive Control versus Traditional Relay Control in a High Energy Efficiency Greenhouse
Chiara Bersani, Marco Fossa, Antonella Priarone, Roberto Sacile, Enrico Zero
April 20, 2023 (v1)
Keywords: greenhouse energy modeling, Model Predictive Control, precision agriculture
The sustainable agriculture cultivation in greenhouses is constantly evolving thanks to new technologies and methodologies able to improve the crop yield and to solve the common concerns which occur in protected environments. In this paper, an MPC-based control system has been realized in order to control the indoor air temperature in a high efficiency greenhouse. The main objective is to determine the optimal control signals related to the water mass flow rate supplied by a heat pump. The MPC model allows a predefined temperature profile to be tracked with an energy saving approach. The MPC has been implemented as a multiobjective optimization model that takes into account the dynamic behavior of the greenhouse in terms of energy and mass balances. The energy supply is provided by a ground coupled heat pump (GCHP) and by the solar radiation while the energy losses related to heat transfers across the glazed envelope. The proposed MPC method was applied in a smart innovative greenhouse... [more]
Unified Power Converter Based on a Dual-Stator Permanent Magnet Synchronous Machine for Motor Drive and Battery Charging of Electric Vehicles
Delfim Pedrosa, Vitor Monteiro, Tiago J. C. Sousa, Luis Machado, Joao L. Afonso
April 20, 2023 (v1)
Keywords: battery charging, electric vehicle, field-oriented control, grid-to-vehicle, Model Predictive Control, unified power converter, vehicle-to-grid
An electric vehicle (EV) usually has two main power converters, namely one for the motor drive system and another for the battery-charging system. Considering the similarities between both converters, a new unified power converter for motor drive and battery charging of EVs is propounded in this paper. By using a single unified power converter, the cost, volume, and weight of the power electronics are reduced, thus also making possible a reduction in the final price of the EV. Moreover, the proposed unified power converter has the capability of bidirectional power flow. During operation in traction mode, the unified power converter controls motor driving and regenerative braking. Additionally, during operation in battery-charging mode, with the EV plugged into the electrical power grid, the unified power converter controls the power flow for slow or fast battery charging (grid-to-vehicle (G2V) mode), or for discharging of the batteries (vehicle-to-grid (V2G) mode). Specifically, this p... [more]
Microsecond Enhanced Indirect Model Predictive Control for Dynamic Power Management in MMC Units
Ajay Shetgaonkar, Aleksandra Lekić, José Luis Rueda Torres, Peter Palensky
April 20, 2023 (v1)
Keywords: Model Predictive Control, modular multilevel converter, power management, real-time digital simulation
The multi-modular converter (MMC) technology is becoming the preferred option for the increased deployment of variable renewable energy sources (RES) into electrical power systems. MMC is known for its reliability and modularity. The fast adjustment of the MMC’s active/reactive powers, within a few milliseconds, constitutes a major research challenge. The solution to this challenge will allow accelerated integration of RES, without creating undesirable stability issues in the future power system. This paper presents a variant of model predictive control (MPC) for the grid-connected MMC. MPC is defined using a Laguerre function to reduce the computational burden. This is achieved by reducing the number of parameters of the MMC cost function. The feasibility and effectiveness of the proposed MPC is verified in the real-time digital simulations. Additionally, in this paper, a comparison between an accurate mathematical and real-time simulation (RSCAD) model of an MMC is given. The compari... [more]
Stratified Control Applied to a Three-Phase Unbalanced Low Voltage Distribution Grid in a Local Peer-to-Peer Energy Community
Bharath Varsh Rao, Mark Stefan, Roman Schwalbe, Roman Karl, Friederich Kupzog, Martin Kozek
April 20, 2023 (v1)
Keywords: Blockchain, holomorphic embedding load flow method, local energy communities, Model Predictive Control, optimal power flows, smart grids, stratified control
This paper presents control relationships between the low voltage distribution grid and flexibilities in a peer-to-peer local energy community using a stratified control strategy. With the increase in a diverse set of distributed energy resources and the next generation of loads such as electric storage, vehicles and heat pumps, it is paramount to maintain them optimally to guarantee grid security and supply continuity. Local energy communities are being introduced and gaining traction in recent years to drive the local production, distribution, consumption and trading of energy. The control scheme presented in this paper involves a stratified controller with grid and flexibility layers. The grid controller consists of a three-phase unbalanced optimal power flow using the holomorphic embedding load flow method wrapped around a genetic algorithm and various flexibility controllers, using three-phase unbalanced model predictive control. The control scheme generates active and reactive po... [more]
Comparative Study of Classical and MPC Control for Single-Phase MMC Based on V-HIL Simulations
Milovan Majstorovic, Marco Rivera, Leposava Ristic, Patrick Wheeler
April 20, 2023 (v1)
Keywords: classical control, hardware-in-the-loop, Model Predictive Control, modular multilevel converters, optimal switching state
The operation of single-phase Modular Multilevel Converter (MMC) is analyzed in the paper. A mathematical model of the converter is developed and described, based on which the structure and selection of parameters for Classical Control and Optimal Switching State Model Predictive Control (OSS-MPC) are defined. Additionally, the procedure for the determination of circuit parameters, such as submodule capacitance and arm inductance, is described and carried out. The listed control methods are designed and evaluated in Virtual Hardware-in-the-Loop together with single-phase MMC power circuit, regarding three control objectives: AC current control, voltage balancing control and circulating current control. Control methods are evaluated for both steady-state and transient performance and compared based on nine criteria: AC current reference tracking, THD of AC current and voltage, submodule capacitor voltage balancing, total submodule voltage control, circulating current magnitude and THD,... [more]
The Cost of Photovoltaic Forecasting Errors in Microgrid Control with Peak Pricing
Thomas Schmitt, Tobias Rodemann, Jürgen Adamy
April 19, 2023 (v1)
Keywords: energy management, Model Predictive Control, PARODIS
Model predictive control (MPC) is widely used for microgrids or unit commitment due to its ability to respect the forecasts of loads and generation of renewable energies. However, while there are lots of approaches to accounting for uncertainties in these forecasts, their impact is rarely analyzed systematically. Here, we use a simplified linear state space model of a commercial building including a photovoltaic (PV) plant and real-world data from a 30 day period in 2020. PV predictions are derived from weather forecasts and industry peak pricing is assumed. The effect of prediction accuracy on the resulting cost is evaluated by multiple simulations with different prediction errors and initial conditions. Analysis shows a mainly linear correlation, while the exact shape depends on the treatment of predictions at the current time step. Furthermore, despite a time horizon of 24h, only the prediction accuracy of the first 75min was relevant for the presented setting.
Model Predictive Control for Paralleled Uninterruptible Power Supplies with an Additional Inverter Leg for Load-Side Neutral Connection
Tiago Oliveira, Luís Caseiro, André Mendes, Sérgio Cruz, Marina Perdigão
April 19, 2023 (v1)
Keywords: Model Predictive Control, multilevel converters, power quality, uninterruptible power supply, zero sequence circulating current
Uninterruptible Power Supplies (UPS) have been demonstrated to be the key technology in feeding either single- and three-phase loads in a wide range of critical applications, such as high-tier datacenters and medical facilities. To increase the overall system power capacity and resilience, UPS systems are usually connected in parallel. When UPS systems are parallel connected, a circulating current can rise, inhibiting correct system operation. Moreover, having a controlled load power distribution is another fundamental requirement in paralleled UPS systems. However, strategies to ensure these two topics have not been explored to date for UPS systems with a load-side neutral connection. This paper proposes an innovative Finite Control Set Model Predictive Control (FCS-MPC) strategy that ensures circulating current elimination and controlled load power distribution for paralleled UPS systems that use an additional inverter leg for load neutral point connection. Additionally, a system top... [more]
A Novel Optimal Charging Algorithm for Lithium-Ion Batteries Based on Model Predictive Control
Guan-Jhu Chen, Yi-Hua Liu, Yu-Shan Cheng, Hung-Yu Pai
April 19, 2023 (v1)
Keywords: equivalent circuit model, lithium-ion battery, Model Predictive Control
Lithium-ion (Li-ion) batteries play a substantial role in portable consumer electronics, electric vehicles and large power energy storage systems. For Li-ion batteries, developing an optimal charging algorithm that simultaneously takes rises in charging time and charging temperature into account is essential. In this paper, a model predictive control-based charging algorithm is proposed. This study uses the Thevenin equivalent circuit battery and transforms it into the state-space equation to develop the model predictive controller. The usage of such models in the battery optimal control context has an edge due to its low computational cost, enabling the realization of the proposed technique using a low-cost Digital Signal Processor (DSP). Compared with the widely employed constant current-constant voltage charging method, the proposed charging technique can improve the charging time and the average temperature by 3.25% and 0.76%, respectively.
Showing records 1 to 25 of 203. [First] Page: 1 2 3 4 5 Last
[Show All Keywords]