Browse
Keywords
Records with Keyword: Computational Fluid Dynamics
Recent Progress in Design and Performance Analysis of Vertical-Axis Wind Turbines—A Comprehensive Review
August 28, 2024 (v1)
Subject: Modelling and Simulations
Keywords: aerodynamic performance, Computational Fluid Dynamics, contra-rotating technique, Darrieus rotor, rotor optimization, Savonius rotor, vertical-axis wind turbine (VAWT)
Vertical-axis wind turbines (VAWTs) are receiving more and more attention as they involve simple design, cope better with turbulence, and are insensitive to wind direction, which has a huge impact on their cost since a yaw mechanism is not needed. However, VAWTs still suffer from low conversion efficiency. As a result, tremendous efforts are being exerted to improve their efficiency, which mainly focus on two methods, regardless of whether the study is a CFD simulation, a field test, or a lab test experiment. An active approach involves modification of the rotor itself, such as the blade design, the angle, the trailing and leading edges, the inner blades, the chord thickness, the contra-rotating rotor, etc., while the second approach involves passive techniques where the flow is directed to optimally face the downwind rotor by mounting guiding vanes such as a diffuser or other shapes at the upwind position of the rotor. Among all the techniques undertaken, the counter-rotating wind tur... [more]
Internally Heated Crackers for Decarbonization and Optimization of Ethylene Production
August 16, 2024 (v2)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, Cracking, Decarbonization, Ethylene, Net-Zero, Process Optimization, Reactor Design
Ethylene is a crucial precursor for a diverse spectrum of products and services. As global production exceeds 150 million tons annually and is projected to surpass 255 million tons by 2035, the imperative for sustainable and efficient ethylene production becomes increasingly clear. Despite Externally Heated Crackers (EHCs) dominating ethylene production for over a century, they face intrinsic limitations that necessitate transformative solutions, including intense radial thermal gradients, high metal demand, and substantial CO2 emissions. This study employs a robust combination of Computational Fluid Dynamics (CFD) coupled with detailed chemical kinetics to rigorously assess selected configurations of Internally Heated Crackers (IHCs) against the leading EHC designs. Our findings reveal that IHCs exhibit the potential to enhance ethylene output by a factor of 1.66 when compared to EHCs of the same length, diameter, and surface temperature. These results herald a promising era for devel... [more]
Membrane-based carbon capture process optimization using CFD modeling
August 16, 2024 (v2)
Subject: Process Design
Carbon capture is a promising option to mitigate CO2 emissions from existing coal-fired power plants, cement and steel industries, and petrochemical complexes. Among the available technologies, membrane-based carbon capture presents the lowest energy consumption, operating costs, and carbon footprint. In addition, membrane processes have important operational flexibility and response times. On the other hand, the major challenges to widespread application of this technology are related to reducing capital costs and improving membrane stability and durability. To upscale the technology into stacked flat sheet configurations, high-fidelity computational fluid dynamics (CFD) that describes the separation process accurately are required. High-fidelity simulations are effective in studying the complex transport phenomena in membrane systems. In addition, obtaining high CO2 recovery percentages and product purity requires a multi-stage membrane process, where the optimal network configuratio... [more]
Study on the Behavior and State of Viscous Fractured Leakage Bridging and Plugging Slurry during the Pump-In and Pressurization Process
June 21, 2024 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, fracture leakage, particle sedimentation, pumping–squeezing
Clarifying the process of bridging and plugging slurry during pumping and squeezing can effectively improve the efficiency and accuracy of fractured leakage treatment while minimizing impacts on safety and the environment. In this paper, computational fluid dynamics (CFD) numerical simulation and experimentation (hydrostatic settling method) are combined to evaluate the dynamic settlement process of different types of plugging slurry through sedimentation changes, sedimentation volume, sedimentation velocity and sedimentation height for factors such as viscosity, particle size, density and concentration of plugging slurry. The formula of particle sedimentation velocity is combined to obtain the following: When the viscosity of plugging slurry is more than 30 mPa·s, the particle diameter is 1.5 mm (particle size is half the fracture width), and the particle density is 2.0−2.6 g/cm3; it shows good dispersion and plugging performance under pumping pressure and while holding and squeezing... [more]
Evaluation and Investigation of Hydraulic Performance Characteristics in an Axial Pump Based on CFD and Acoustic Analysis
June 21, 2024 (v1)
Subject: Modelling and Simulations
Keywords: acoustics analysis, axial pump, Computational Fluid Dynamics, pressure pulsation, tip blade, tip vortex
In this work, the internal flow behaviour and characteristic pressure fluctuations of an axial pump with varying water conditions are analysed. The impact of tip vortex flow on the pattern of turbulent flow is simulated numerically by the application of the CFD technique and experimentally using an acoustics analysis method. The numerical CFD data are verified with an experimental test model for accuracy and reliability. Based on the results, the difference in pressure in the internal flow and at the surfaces of the blade can be impacted through tip leakage vortex regions, which leads to changes in internal flow. Subsequently, the flow in the clearance and tip leakage vortex regions is changed. Moreover, the results reveal that the suction wall upstream is more unsteady near the surface due to more mixing, secondary flow, and tip leakage vortices. Pressure fluctuation occurs near the tip of the blade, caused by the increasing vortex flow velocity and hence raising the turbulent kinetic... [more]
Comparative Analysis of Ultrasonic and Traditional Gas-Leak Detection Systems in the Process Industries: A Monte Carlo Approach
June 21, 2024 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, detection probability, fixed monitoring system, gas-leak detection, Monte Carlo simulation, oil refining and petrochemical industries, ultrasonic
Gas leaks can cause disasters at process sites, including fires and explosions, and thus, effective gas-leak detection systems are required. This study investigated the limitations of conventional detectors and introduced an innovative ultrasonic sensor-based approach for continuous monitoring. A new configuration for a stationary remote ultrasonic gas-leak monitoring system is proposed. The selected material was 1-Butene. The detection probability was assessed through a simulation based on a gas-leak scenario, detailing the selection criteria for leak sites and simulation conditions. Computational fluid-dynamics (CFD) simulations were used to evaluate the detection capability of the existing system, whereas Monte Carlo simulations were used to compare it with the proposed ultrasonic system. The CFD simulation was performed by setting the lower detection limit of the concentration-measurement-type gas detector to 600 ppm, and the leak-detection time was approximately 8.895 s. A Monte C... [more]
Optimization of Impeller Structure Parameters of a Centrifugal Fan in a Powered Air-Purifying Respirator Power System
June 7, 2024 (v1)
Subject: Modelling and Simulations
Keywords: centrifugal fan, Computational Fluid Dynamics, impeller optimization, orthogonal test, Q criterion normalized
As the core power element of a centrifugal fan, the impeller’s structural parameters are important factors affecting the aerodynamic performance of the fan. Therefore, to improve the aerodynamic performance of centrifugal fans, in this study, we take the Powered Air-Purifying Respirator (PAPR) power system as the object of research and use a combination of computational fluid dynamics (CFD) and experimental validation to investigate the effects of the number of blades, blade inlet angle, blade outlet angle, blade height, and blade thickness on the aerodynamic performance of the fan. A five-factor, four-level orthogonal test table L16 (45) was selected to obtain the optimal combination of structural parameters for the impeller. In addition, in order to identify and visualize the features of the vortex, Q Criterion Normalized is applied to the simulation on the basis that the minimum pressure appears in the vortex core. In this study, Q Criterion Normalized is used to compare the interna... [more]
Research on the Optimization of a Diesel Engine Intercooler Structure Based on Numerical Simulation
June 7, 2024 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, grey correlation theory, intercoolers, porous media models
As a device for cooling charged air before it enters the cylinder, the intercooler is an indispensable part of the regular operation of a booster diesel engine. To solve the problem of the insufficient cooling performance of an intercooler for a high-power supercharged diesel engine, in this study, the flow field in the intercooler is simulated using the computational fluid dynamics (CFD) model of porous media, and the performance data measured using the steady flow test bench are used to provide boundary conditions for the calculation. The effects of the charged air mass flow rate and the tube bundle’s transverse spacing on the heat dissipation performance of the intercooler are analyzed and compared. The calculation results show that, under the condition of satisfying the regular operation of the diesel engine, the heat transfer coefficient of the intercooler heat dissipation belt increases with the increase in air mass flow and the spacing of cooling pipes, and the heat transfer coe... [more]
Flow Characteristics Analysis of a 1 GW Hydraulic Turbine at Rated Condition and Overload Operation Condition
June 7, 2024 (v1)
Subject: Modelling and Simulations
Keywords: 1 GW Francis turbine, Computational Fluid Dynamics, nonlinear fitting, overload condition, pure clearance
Flow stability is extremely important for hydraulic turbines, especially for 1 GW hydraulic turbines, and has a strong impact on mesh stability. However, turbines often operate under non-design conditions, and current research on this aspect is still lacking. So a model of the fluid domains of a high-quality installed 1 GW Francis turbine was established to investigate the flow characteristics of the turbine and fluid domains. CFD simulations of a 1 GW Francis turbine under rated load and overload operation conditions were performed. According to simulation results, when the turbine is under the overload operation condition, the internal flow stability of the 1 GW hydraulic turbine can be obviously different from that of the rated load. In the overload condition, the flow field is more turbulent and a large number of vortices are generated in the draft tube, resulting in significant changes in pressure, flow rate, and output. In order to improve calculation accuracy, a pure clearance m... [more]
10. LAPSE:2024.0898
Fluid Dynamics Investigation in a Cold Flow Model of Internal Recycle Quadruple Fluidized Bed Coal Pyrolyzer
June 7, 2024 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, coupling of pyrolyzer and combustor, experimental model, hydrodynamic characteristics, IR-QFBP
Internal recycle quadruple fluidized bed pyrolyzer (IR-QFBP) consists of a dual fluidized bed pyrolyzer and a dual fluidized bed combustor and is proposed in this work. It is a new kind of efficient fluidized bed with high pyrolysis and energy efficiency. IR-QFBP may attract extensive attention because of its compact structure. Cold hydrodynamic characteristics of IR-QFBP are the bases of modeling and designing for the hot one. To fully understand the hydrodynamic characteristics of IR-QFBP, a cold flow model on a laboratory scale was designed and set up; furthermore, the two-fluid model (TFM) based simulation was also carried out. The pressure profiles, fluidization states, velocity profiles, and circulation rates of a solid powder at different operation conditions in IR-QFBP were investigated. The results showed that the stable internal circulation of solid powder can be achieved in IR-QFBP. And different circulation characteristics can be obtained by adjusting the operating conditio... [more]
11. LAPSE:2024.0895
Exploring Vortex−Flame Interactions and Combustion Dynamics in Bluff Body-Stabilized Diffusion Flames: Effects of Incoming Flow Velocity and Oxygen Content
June 7, 2024 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, diffusion combustion, dynamic combustion characteristic, oxygen content, vortex shedding
An afterburner encounters two primary features: high incoming flow velocity and low oxygen concentration in the incoming airflow, which pose substantial challenges and contribute significantly to the deterioration of combustion performance. In order to research the influence of oxygen content on the dynamic combustion characteristics of the afterburner under various inlet velocities, the effect of oxygen content (14−23%) on the field structure of reacting bluff body flow, flame morphology, temperature pulsation, and pressure pulsation of the afterburner at different incoming flow velocities (0.1−0.2 Ma) was investigated in this study by using a large eddy simulation method. The results show that two different instability features, BVK instability and KH instability, are observed in the separated shear layer and wake, and are influenced by changes in the O2 mass fraction and Mach number. The oxygen content and velocity affected the oscillation amplitude of the downstream flow. As the O2... [more]
12. LAPSE:2024.0879
Study on Heat Transfer Synergy and Optimization of Capsule-Type Plate Heat Exchangers
June 7, 2024 (v1)
Subject: Modelling and Simulations
Keywords: capsule-type plate heat exchanger, co-ordination angle, Computational Fluid Dynamics, multi-objective optimization
An efficient and accurate method for optimizing capsule-type plate heat exchangers is proposed in this paper. This method combines computational fluid dynamics simulation, a backpropagation algorithm and multi-objective optimization to obtain better heat transfer performance of heat exchanger structures. For plate heat exchangers, the heat transfer coefficient j and friction coefficient f are a pair of contradictory objectives. The optimization of capsule-type plate heat exchangers is a multi-objective optimization problem. In this paper, a backpropagation neural network was used to construct an approximate model. The plate shape was optimized by a multi-objective genetic algorithm. The optimized capsule-type plate heat exchanger has lower flow resistance and higher heat exchange efficiency. After optimization, the heat transfer coefficient is increased by 8.3% and the friction coefficient is decreased by 14.3%, and the heat transfer effect is obviously improved. Further, analysis of f... [more]
13. LAPSE:2024.0750
Study of a Novel Method to Weaken the Backmixing in a Multi-Inlet Vortex Mixer
June 6, 2024 (v1)
Subject: Modelling and Simulations
Keywords: backmixing, Computational Fluid Dynamics, multi-inlet vortex mixer, residence time distribution, scale-up
A new idea to deal with the backmixing problem in a scaled-up multi-inlet vortex mixer is proposed in this paper. Firstly, a Reynolds-averaged Navier−Stokes−large-eddy simulation hybrid model was used to simulate the flow field in a vortex mixer, and the numerical simulation results were compared with those from a particle image velocimetry experiment in order to validate the shielded detached eddy simulation model in the rotating shear flow. Then, by adding a series of columns in the mixing chamber, the formation of wake vortexes was promoted. The flow field in the vortex mixer with different column arrangements were simulated, and the residence time distribution curves of the fluid were obtained. Meanwhile, the degree of backmixing in the vortex mixer was evaluated by means of a tanks-in-series model. In the total ten cases related with four groups of variables, it was found that increasing the diameter of the column was the most efficient for weakening the backmixing in the vortex m... [more]
14. LAPSE:2024.0684
CFD Analysis of the Pressure Drop Caused by the Screen Blockage Rate in a Membrane Strainer
June 6, 2024 (v1)
Subject: Modelling and Simulations
Keywords: autostrainer, blockage rate, Computational Fluid Dynamics, debris, headloss coefficient, membrane, pressure drop
Autostrainer is used for the purpose of debris removal in order to increase the efficiency of the heat exchanger by taking the required raw water as a heat source for the pre-cooling hydrothermal system. During the operation of the autostrainer, a pressure drop occurs due to the blockage of the screen in the autostrainer. As a result, the resistance of the pipe network for the intake system is changed, and the operating efficiency point of the pump, valve, heat exchanger, etc., is altered. By calculating the system resistance taking into account the pressure drop caused by the blockage rate of the screen in the autostrainer, the optimum operating efficiency can be expected when the intake system such as a pump, valve or heat exchanger, etc. is constructed. In this study, Computational Fluid Dynamics (CFD) was used to construct a scenario in which screen blockage may occur, predicting pressure drop for the slot cross-section of the screen in the autostrainer to derive a resistance coeff... [more]
15. LAPSE:2024.0598
Numerical Study of the Thermal and Hydraulic Characteristics of Plate-Fin Heat Sinks
June 5, 2024 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, heat exchanger, heat transfer, hydrodynamics, microelectronic cooling, numerical modeling
One of the main trends in the development of the modern electronics industry is the miniaturization of electronic devices and components. Miniature electronic devices require compact cooling systems that can dissipate large amounts of heat in a small space. Researchers are exploring ways to improve the design of the heat sink of the cooling system in such a way that it increases the heat flow while at the same time reducing the size of the heat sink. Researchers have previously proposed different designs for heat sinks with altered fin shapes, perforations, and configurations. However, this approach to optimizing the design of the heat sink results in an increase in the labor intensity of its production. Our goal is to optimize the heat sink design to reduce its size, reduce metal consumption, and increase heat flow. This goal is achieved by changing the number of fins and the distance between them. In this case, there is no significant difference in the geometry of a conventional plat... [more]
16. LAPSE:2024.0485
A Numerical Study on the Performance of a Pumping Station with Bell-Mouth-Based Vertical Pumps during an Accidental Shutdown
June 5, 2024 (v1)
Subject: Modelling and Simulations
Keywords: 4-quadrant characteristics, Computational Fluid Dynamics, multiphase flow, power cut, pumping station, suction bell, transient simulation, vertical mixed-flow pump, VOF
This study presents a numerical simulation of a pump’s performance during a power-cut event and connected hazards resulting from the failure of non-return flap valves. The vertical mixed-flow pumps with suction bells were mounted inside the suction basins of a pumping station. Different regimes of the pump operation during the time were analyzed based on the pump’s 4-quadrant characteristics and the dynamics of rotating parts in the pump, gearbox and electric engine. The resulting development of flow rates, rotor speed and forces in the course of time were used to analyze the hazards of failure of any pumping system component and the flooding of the suction object and its surroundings. The presented results show a deep insight into the flow phenomena in vertical mixed-flow pumps with suction bells during the runaway process and confirm that the developed methodology can be successfully applied to monitor the critical regimes in a pumping station in real time. The simulations were verif... [more]
17. LAPSE:2024.0303
CFDs Modeling and Simulation of Wheat Straw Pellet Combustion in a 10 kW Fixed-Bed Downdraft Reactor
June 5, 2024 (v1)
Subject: Modelling and Simulations
This research paper presents a comprehensive study on the combustion of wheat straw pellets in a 10 kW fixed-bed reactor through a Computational Fluid Dynamics (CFDs) simulation and experimental validation. The developed 2D CFDs model in ANSYS meshing simulates the combustion process in ANSYS Fluent software 2021 R2. The investigation evaluates key parameters such as equivalence ratio, heating value, and temperature distribution within the reactor to enhance gas production efficiency. The simulated results, including combustion temperature and produced gases (CO2, CO, CH4), demonstrate a significant agreement with experimental combustion data. The impact of the equivalence ratio on the conversion efficiency and lower heating value (LHV) is systematically explored, revealing that an equivalence ratio of 0.35 is optimal for maximum gas production efficiency. The resulting producer gas composition at this optimum condition includes CO (~27.67%), CH4 (~3.29%), CO2 (~11.09%), H2 (~11.09%),... [more]
18. LAPSE:2024.0179
Reducing the Environmental and Economic Consequences of Installing an Underground Collector and Increasing User Comfort with a New Geometry and Installation Method
February 10, 2024 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, ground collector, heat extraction, renewable energy sources
The installation of ground collectors often has several disadvantages for the user, despite future benefits in more ecological heating, namely the need for a large space for installation, which increases costs, and can also cause inconvenience later, for example, by keeping snow on the surface for a longer time. The goal of this paper was to find out with the help of simulations in ANSYS whether a collector with a different geometry and arrangement (vertical spiral with diameters of 6, 8 and 10 m), which would be more comfortable, cheaper, and also friendlier to the environment, would achieve performance similar to the classic geometry—meander. The initial results are relatively favorable and prove that there is room for optimization and improvement in this field. Verification of network sensitivity in all cases is 8% or less. In the current situation of the energy crisis, it is necessary to look for the possibilities of using heat pumps in cities and metropolises. The new geometry cou... [more]
19. LAPSE:2024.0079
Design, Multi-Perspective Computational Investigations, and Experimental Correlational Studies on Conventional and Advanced Design Profile Modified Hybrid Wells Turbines Patched with Piezoelectric Vibrational Energy Harvester Devices for Coastal Regions
January 12, 2024 (v1)
Subject: Modelling and Simulations
Keywords: composite materials, Computational Fluid Dynamics, FEA, forced and free vibrations, FSI, hybrid energy, hydro-energy
This work primarily investigates the performance and structural integrity of the Wells turbines for power production in coastal locations and their associated unmanned vehicles. An innovative design procedure is imposed on the design stage of the Wells turbine and thus so seven different models are generated. In the first comprehensive investigation, these seven models underwent computational hydrodynamic analysis using ANSYS Fluent 17.2 for various coastal working environments such as hydro-fluid speeds of 0.34 m/s, 1.54 m/s, 12 m/s, and 23 m/s. After this primary investigation, the best-performing Wells turbine model has been imposed as the second comprehensive computational investigation for three unique design profiles. The imposed unique design profile is capable of enhancing the hydro-power by 15.19%. Two detailed, comprehensive investigations suggest the best Wells turbine for coastal location-based applications. Since the working environments are complicated, additional advance... [more]
20. LAPSE:2024.0052
Multiscale CFD Simulation of Multiphase Erosion Process in a Connecting Pipe of Industrial Polycrystalline Silicon Unit
January 5, 2024 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, energy-minimization multi-scale, erosion, multiphase, polycrystalline silicon
Severe erosion phenomena often occur in industrial polycrystalline silicon units, leading to hydrogen leakage accidents and affecting long-term operation. It is favorable to use a computational fluid dynamics (CFD) simulation with the dense discrete phase model (DDPM) and the sub-grid energy-minimization multi-scale (EMMS) drag model to improve the prediction accuracy of complex multiphase erosion phenomena in a connecting pipe of an industrial polycrystalline silicon unit. Furthermore, the effect of droplet the specularity coefficient on boundary conditions is thoroughly considered. The predicted erosion behaviors are consistent with industrial data. The effects of operations parameters were discussed with three-dimensional CFD simulation, including droplet size and hydrogen volume fraction on erosion behaviors. The results indicated that the non-uniform multiphase erosion flow behavior near the wall can be simulated accurately with the EMMS drag model in a coarse mesh. A suitable dro... [more]
21. LAPSE:2024.0048
Modeling of Oxidative Coupling of Methane for Manufacture of Olefins—Part I: CFD Simulations
January 5, 2024 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, fixed-bed reactors, heat and mass transfer, Olefins, oxidative coupling of methane
This paper presents a comprehensive computational fluid dynamics (CFD) model for describing the oxidative coupling of methane (OCM) carried out in fixed-bed reactors for olefin production. Initially, a single pellet model was developed and implemented to describe the heat and mass transfer within the pellet and between the gaseous and solid phases. Subsequently, sensitivity analyses were performed to assess the impact of pellet arrangement and feed conditions on the heat and mass transfer rates, subsequently affecting concentration and temperature profiles. As indicated by the simulations, a high ethylene content could be obtained with the increase in the CH4/O2 ratio, aligning well with previous experimental studies. Furthermore, it was observed that pellet arrangement can significantly affect the reactor performance. Additionally, the behavior of temperature and concentration in the gaseous and solid phases can be very different, such that pseudo-homogeneous modeling approaches shoul... [more]
22. LAPSE:2023.36852
Homogeneous Field Measurement and Simulation Study of Injector Nozzle Internal Flow and Near-Field Spray
November 30, 2023 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, diesel fuel injector, internal flow, near-field spray, X-ray phase contrast imaging
The homogeneous field measurement of internal flow and spray of internal combustion engine injector nozzles under high pressure has always been one of the difficulties in experimental research. In this paper, an actual-size aluminum alloy nozzle is designed, and the simultaneous measurement of internal flow and near-field spray is successfully realized with the help of synchrotron radiation X-ray phase contrast imaging technology under an injection pressure of 30~90 MPa. For a 0.25 mm aperture nozzle, different radii of the inlet corner can induce different cavitation layer thicknesses, and the measured flow section shrinkage ratio is 0.70. The flow characteristics in the nozzle are entirely connected to the jet characteristics, indicating a tight correlation between internal flow and jet morphology. Finally, the internal cavitation of the nozzle was studied by the CFD simulation, and the simulation results are in good agreement with the experiment.
23. LAPSE:2023.36795
Numerical Study on High Throughput and High Solid Particle Separation in Deterministic Lateral Displacement Microarrays
September 21, 2023 (v1)
Subject: Numerical Methods and Statistics
Keywords: Computational Fluid Dynamics, deterministic lateral displacement, discrete element method, high throughput, immersed boundary method, particle concentration, particle separation
Deterministic lateral displacement (DLD) is a high-resolution passive microfluidic separation method for separating micron-scale particles according to their size. Optimizing these microsystems for larger throughputs and particle concentrations is of interest for industrial applications. This study evaluates the limitations of the functionality of the DLD separation principle under these specific conditions. For this reason, different particle volume fractions (up to 11%) and volumetric flow rates (corresponding to Reynolds numbers up to 50) were varied within the DLD microsystem and tested in different combinations. Resolved two-way coupled computational fluid dynamics/discrete element method (CFD-DEM) simulations including spherical particles were performed. The results show a general increase in the critical diameter with increasing volume fraction and decreasing separation efficiency. The largest tested Reynolds number (Re = 50) results in the highest separation efficiency, particu... [more]
24. LAPSE:2023.36725
Mixing Characteristics and Parameter Effects on the Mixing Efficiency of High-Viscosity Solid−Liquid Mixtures under High-Intensity Acoustic Vibration
September 21, 2023 (v1)
Subject: Modelling and Simulations
Keywords: acoustic vibration, Computational Fluid Dynamics, high viscosity, Mixing, multiphase flow
High-intensity acoustic vibration is a new technology for solving the problem of uniform dispersion of highly viscous materials. In this study, we investigate the mixing characteristics of high-viscosity solid−liquid phases under high-intensity acoustic vibration and explore the effect of vibration parameters on the mixing efficiency. A numerical simulation model of solid−liquid−gas multiphase flow, employing the volume of fluid (VOF) and discrete phase model (DPM), was developed and subsequently validated through experimental verification. The results show that the movement and deformation of the gas−liquid surface over the entire field are critical for achieving rapid and uniform mixing of the solid−liquid phases under acoustic vibration. Increasing the amplitude or frequency of vibration can intensify the movement and deformation of the free surface of gas and liquid, improve the mixing efficiency, and shorten the mixing time. Under the condition of constant acceleration, the mixing... [more]
25. LAPSE:2023.36557
Effect of Al2O3, SiO2, and ZnO Nanoparticle Concentrations Mixed with EG−Water on the Heat Transfer Characteristics through a Microchannel
August 3, 2023 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, heat transfer characteristics, microchannels, nanofluids
Nanofluids have gained attention for their potential to solve overheating problems in various industries. They are a mixture of a base fluid and nanoparticles dispersed on the nanoscale. The nanoparticles can be metallic, ceramic, or carbon based, depending on the desired properties. While nanofluids offer advantages, challenges such as nanoparticle agglomeration, stability, and cost effectiveness remain. Nonetheless, ongoing research aims to fully harness the potential of nanofluids in addressing overheating issues and improving thermal management in different applications. The current study is concerned with the fluid flow and heat transfer characteristics of different nanofluids using different types of nanoparticles such as Al2O3, SiO2, and ZnO mixed with different base fluids. Pure water and ethylene glycol−water (EG−H2O) mixtures at different EG−H2O ratios (ψ = 0%, 10%, 30%, 40%) are used as the base fluid. Furthermore, a rectangular microchannel heat sink is used. Mesh independe... [more]