Browse
Keywords
Records with Keyword: Butanol
Characterizing Novel Acetogens for Production of C2−C6 Alcohols from Syngas
Rahul Thunuguntla, Hasan K. Atiyeh, Raymond L. Huhnke, Ralph S. Tanner
June 21, 2024 (v1)
Keywords: Butanol, Ethanol, hexanol, novel acetogens, Syngas
Utilizing syngas components CO, CO2, and H2 to produce fatty acids and alcohols offers a sustainable approach for biofuels and chemicals, reducing the global carbon footprint. The development of robust strains, especially for higher alcohol titers in C4 and C6 compounds, and the creation of cost-effective media are crucial. This study compared syngas fermentation capabilities of three novel strains (Clostridium carboxidivorans P20, C. ljungdahlii P14, and C. muellerianum P21) with existing strains (C. ragsdalei P11 and C. carboxidivorans P7) in three medium formulations. Fermentations in 250-mL bottles were conducted at 37 °C using H2:CO2:CO (30:30:40) using P11, P7, and corn steep liquor (CSL) media. Results showed that P11 and CSL media facilitated higher cell mass, alcohol titer, and gas conversion compared to the P7 medium. Strains P7, P14, and P20 formed 1.4- to 4-fold more total alcohols in the CSL medium in comparison with the P7 medium. Further, strain P21 produced more butanol... [more]
Comparative Analysis of the Engine Performance and Emissions Characteristics Powered by Various Ethanol−Butanol−Gasoline Blends
Ashraf Elfasakhany
April 28, 2023 (v1)
Keywords: blends, Butanol, comparative, dual, Ethanol, ternary
Although many biofuel blends have been proposed recently, comparisons of such blends are rarely investigated. Currently, it is extremely difficult to recommend one biofuel blend over another since comparisons are not carried out under the same engine conditions. In the current study, different biofuel blends in dual and ternary issues are compared together, as well as with conventional gasoline under the same engine conditions. Five different biofuel blends are considered, i-butanol (iB), n-butanol (nB), bio-ethanol (E), n-butanol−bio-ethanol (nBE), and i-butanol−bio-ethanol−gasoline (iBE) blends, at two different engine speeds (2500 and 3500 rpm/min). Additionally, the blends are compared in the average bases through wide engine speeds. The comparisons of blends are carried out via engine performance and emissions. The performance includes engine power, torque, and volumetric efficiency, while the emissions include CO, CO2, and UHC. Results showed that the E blends presented higher pe... [more]
Progress in the Use of Biobutanol Blends in Diesel Engines
David Fernández-Rodríguez, Magín Lapuerta, Lizzie German
April 20, 2023 (v1)
Keywords: Biofuels, Butanol, Diesel, emissions, engine, GHG, performance, properties
Nowadays, the transport sector is trying to face climate change and to contribute to a sustainable world by introducing modern after-treatment systems or by using biofuels. In sectors such as road freight transportation, agricultural or cogeneration in which the electrification is not considered feasible with the current infrastructure, renewable options for diesel engines such as alcohols produced from waste or lignocellulosic materials with advanced production techniques show a significant potential to reduce the life-cycle greenhouse emissions with respect to diesel fuel. This study concludes that lignocellulosic biobutanol can achieve 60% lower greenhouse gas emissions than diesel fuel. Butanol-diesel blends, with up to 40% butanol content, could be successfully used in a diesel engine calibrated for 100% diesel fuel without any additional engine modification nor electronic control unit recalibration at a warm ambient temperature. When n-butanol is introduced, particulate matter em... [more]
The Effect of RME-1-Butanol Blends on Combustion, Performance and Emission of a Direct Injection Diesel Engine
Wojciech Tutak, Arkadiusz Jamrozik, Karol Grab-Rogaliński
April 20, 2023 (v1)
Keywords: biodiesel, Butanol, combustion stability, combustion stages, emission
The main objective of this study was assessment of the performance, emissions and combustion characteristics of a diesel engine using RME−1-butanol blends. In assessing the combustion process, great importance was placed on evaluating the stability of this process. Not only were the typical COVIMEP indicators assessed, but also the non-burnability of the characteristic combustion stages: ignition delay, time of 50% heat release and the end of combustion. The evaluation of the combustion process based on the analysis of heat release. The tests carried out on a 1-cylinder diesel engine operating at a constant load. Research and evaluation of the combustion process of a mixture of RME and 1-butanol carried out for the entire range of shares of both fuels up to 90% of 1-butanol energetic fraction. The participation of butanol in combustion process with RME increased the in-cylinder peak pressure and the heat release rate. With the increase in the share of butanol there was noted a decrease... [more]
Capability of Immobilized Clostridium beijerinckii TISTR 1461 on Lotus Stalk Pieces to Produce Butanol from Sugarcane Molasses
Patthranit Narueworanon, Lakkana Laopaiboon, Pattana Laopaiboon
March 28, 2023 (v1)
Keywords: ABE fermentation, Butanol, cell immobilization, Clostridium beijerinckii, sugarcane molasses
Immobilized Clostridium beijerinckii TISTR 1461 was used to enhance the butanol production efficiency from sugarcane molasses. Lotus stalk (LS) pieces were used as carriers for cell immobilization. Sugarcane molasses containing 50 g/L of sugar supplemented with 1 g/L of yeast extract was found to be an appropriate medium for bacterial cell immobilization on the LS pieces. Carrier size (4, 12 and 20 mm in length) and carrier loading (1:15, 1:30 and 1:45, w/v) were optimized for high levels of butanol production using response surface methodology (RSM). The batch fermentation was carried out under anaerobic conditions in 1 L screw-capped bottles at 37 °C and an agitation rate of 150 rpm. It was found that the optimum conditions for the butanol production were the carrier size of 4 mm and carrier loading of 1:31 (w/v). Under these conditions, the butanol concentration (PB) was 12.89 g/L, corresponding to the butanol productivity (QB) of 0.36 g/L∙h and butanol yield (YB/S) of 0.36 g/g. The... [more]
Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine
Jakub Čedík, Martin Pexa, Michal Holúbek, Zdeněk Aleš, Radek Pražan, Peter Kuchar
March 28, 2023 (v1)
Keywords: Butanol, coconut oil, diesel fuel, emissions, engine, fuel consumption, performance
The global concentration of greenhouse gasses in the atmosphere is increasing as well as the emissions of harmful pollutants. Utilization of liquid biofuels in combustion engines helps to reduce these negative effects. For diesel engines, the most common alternative fuels are based on vegetable oils. Blending neat vegetable oils with diesel and/or alcohol fuels is a simple way to make them suitable for diesel engines. In this study, coconut oil was used in ternary fuel blends with diesel and butanol. Coconut oil is a potentially usable source of renewable energy, especially in the Pacific, where it is a local product. Diesel fuel-coconut oil-butanol fuel blends were used in concentrations of 70%/20%/10% and 60%/20%/20%, and 100% diesel fuel was used as a reference. The effect of the fuel blends on the production of harmful emissions, engine smoke, performance parameters, fuel consumption and solid particles production was monitored during the measurement. The engine was kept at a const... [more]
Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol−Glycerol Blend
Stanislaw Szwaja, Michal Gruca, Michal Pyrc, Romualdas Juknelevičius
March 8, 2023 (v1)
Keywords: Butanol, comparative analysis, Gasoline, glycerol, internal combustion engine
Investigation of a new type of fuel for the internal combustion engine, which can be successfully used in both the power generation and the automotive industries, is presented in this article. The proposed fuel is a blend of 75% n-butanol and 25% glycerol. The engine tests conducted with this glycerol−butanol blend were focused on the performance, combustion thermodynamics, and exhaust emissions of a spark-ignition engine. A comparative analysis was performed to find potential similarities and differences in the engine fueled with gasoline 95 and the proposed glycerol−butanol blend. As measured, CO exhaust emissions increased, NOx emissions decreased, and UHC emissions were unchanged for the glycerol−butanol blend when compared to the test with sole gasoline. As regards the engine performance and combustion progress, no significant differences were observed. Exhaust temperature remarkably decreased by 3.4%, which contributed to an increase in the indicated mean effective pressure by ap... [more]
Biodiesel Produced from Propanol and Longer Chain Alcohols—Synthesis and Properties
Mia Gotovuša, Ivan Pucko, Marko Racar, Fabio Faraguna
February 27, 2023 (v1)
Keywords: biodesel synthesis, Butanol, fatty acid alkyl ester, fatty acid butyl esters, fatty acid propyl esters, octanol, pentanol, propanol
Biodiesel has established itself as a renewable fuel that is used in transportation worldwide and is partially or in some cases completely replacing conventional fuels. Chemically, biodiesel is a fatty acid monoalkyl ester (FAAE). Generally, the term biodiesel refers to the fatty acid methyl or ethyl esters (FAME or FAEE). Herein, an overview of the research on the synthesis of FAAE in which the alkyl moiety is a C3+ alkyl chain (branched/unbranched) is given. In addition, a comparison of the properties of the aforementioned FAAE with each other, with FAME and FAEE, and with fuel standards is given. The length of the alkyl chain has a major influence on viscosity, while pour point temperatures are generally lower when branched alcohols are used, but the fatty acid part of the molecule also has a major influence. The development of new pathways for the synthesis of higher alcohols from biomass opens a future perspective for the production of long chain FAAE as biofuels, fuel additives,... [more]
Simultaneous Extraction of Rapeseed Oil and Enzymatic Transesterification with Butanol in the Mineral Diesel Medium
Egle Sendzikiene, Violeta Makareviciene, Migle Santaraite
February 27, 2023 (v1)
Keywords: Butanol, in situ, mineral diesel, Optimization, rapeseed
Increasing environmental pollution is driving an increase in the production and use of biofuels. The cost price of biodiesel could be reduced by using low-quality oilseeds unfit for human consumption and by applying the simultaneous oil extraction and transesterification process, avoiding the oil pressure stage. The purpose of this study was to investigate the enzymatic biofuel production process (in situ) by using rapeseed with high oil acidity for simultaneous oil extraction and transesterification with a mixture of butanol and mineral diesel fuel. The investigation of the in situ process was performed using a mixture of butanol and mineral diesel and the most effective biocatalyst Lipozyme TL IM was selected. The novelty of this paper consists of the fact that mineral diesel was used as the oil extractant, and the amount chosen was such that, at the end, a mixture of fuel with a ratio 9:1 of mineral diesel to biodiesel was be produced. The experiments were carried out using ground r... [more]
Effectiveness of Butanol and Deposit Control Additive in Fuel to Reduce Deposits of Gasoline Direct Injection Engine Injectors
Ireneusz Pielecha, Zbigniew Stępień, Filip Szwajca, Grzegorz Kinal
February 23, 2023 (v1)
Keywords: Butanol, DCA, fuel atomization quality, GDI engine, injector deposition
Modern internal combustion engines are designed to meet new emission standards and reduce fuel consumption. The wide application of direct fuel injection is associated with the problem of injector contamination. It leads to a deterioration of the engine’s environmental performance. The paper aims to evaluate the effect of applying gasoline−butanol blends and appropriate additives on the formation of injector deposits. The research involved testing the engine on a dynamometer, evaluating the injector tips visually at 1000× magnification, and registering the fuel spray using high-speed imaging techniques with a laser and halogen lighting source. The effect of engine operating with the reference fuel was to coke the injector tip with a linear pattern. It increased the linear injection time to keep the engine’s operating point constant over the 48 h test. The application of 20% (v/v) butanol reduced deposit formation. The best scavenging results were obtained by extending the engine operat... [more]
Diversity and Evolution of Clostridium beijerinckii and Complete Genome of the Type Strain DSM 791T
Karel Sedlar, Marketa Nykrynova, Matej Bezdicek, Barbora Branska, Martina Lengerova, Petra Patakova, Helena Skutkova
February 23, 2023 (v1)
Keywords: ABE, accessory genome, Butanol, core genome, IBE, pan genome
is a relatively widely studied, yet non-model, bacterium. While 246 genome assemblies of its various strains are available currently, the diversity of the whole species has not been studied, and it has only been analyzed in part for a missing genome of the type strain. Here, we sequenced and assembled the complete genome of the type strain Clostridium beijerinckii DSM 791T, composed of a circular chromosome and a circular megaplasmid, and used it for a comparison with other genomes to evaluate diversity and capture the evolution of the whole species. We found that strains WB53 and HUN142 were misidentified and did not belong to the Clostridium beijerinckii species. Additionally, we filtered possibly misassembled genomes, and we used the remaining 237 high-quality genomes to define the pangenome of the whole species. By its functional annotation, we showed that the core genome contains genes responsible for basic metabolism, while the accessory genome has genes affecting final phenotype... [more]
A Comparison of Ethanol, Methanol, and Butanol Blending with Gasoline and Its Effect on Engine Performance and Emissions Using Engine Simulation
Simeon Iliev
February 23, 2023 (v1)
Keywords: alcohols, Butanol, emissions, Ethanol, Methanol
Air pollution, especially in large cities around the world, is associated with serious problems both with people’s health and the environment. Over the past few years, there has been a particularly intensive demand for alternatives to fossil fuels, because when they are burned, substances that pollute the environment are released. In addition to the smoke from fuels burned for heating and harmful emissions that industrial installations release, the exhaust emissions of vehicles create a large share of the fossil fuel pollution. Alternative fuels, known as non-conventional and advanced fuels, are derived from resources other than fossil fuels. Because alcoholic fuels have several physical and propellant properties similar to those of gasoline, they can be considered as one of the alternative fuels. Alcoholic fuels or alcohol-blended fuels may be used in gasoline engines to reduce exhaust emissions. This study aimed to develop a gasoline engine model to predict the influence of different... [more]
Renewable Hydrogen Production from Butanol Steam Reforming over Nickel Catalysts Promoted by Lanthanides
João Paulo da S. Q. Menezes, Gabriel M. Guimarães, Mônica A. P. da Silva, Mariana M. V. M. Souza
February 23, 2023 (v1)
Subject: Environment
Keywords: Butanol, coke, Hydrogen, lanthanides, reforming
Hydrogen is mainly produced by steam reforming of natural gas, a nonrenewable resource. Alternative and renewable routes for hydrogen production play an important role in reducing dependence on oil and minimizing the emission of greenhouse gases. In this work, butanol, a model compound of bio-oil, was employed for hydrogen production by steam reforming. The reaction was evaluated for 30 h in a tubular quartz reactor at 500 °C, atmospheric pressure, GHSV of 500,000 h−1, and an aqueous solution feed of 10% v/v butanol. For this reaction, catalysts with 20 wt.% NiO were prepared by wet impregnation using three supports: γ-alumina and alumina modified with 10 wt.% of cerium and lanthanum oxides. Both promoters increased the reduction degree of the catalysts and decreased catalyst acidity, which is closely related to coke formation and deactivation. Ni/La2O3−Al2O3 presented a higher nickel dispersion (14.6%) which, combined with other properties, led to a higher stability, higher mean hydro... [more]
Acetone−Butanol−Ethanol Fermentation Phenomenological Models for Process Studies: Parameter Estimation and Multi-Response Model Reduction with Statistical Analysis
Felipe Ramalho Moura, José Luiz de Medeiros, Ofélia de Queiroz F. Araújo
February 23, 2023 (v1)
Keywords: ABE fermentation, Butanol, parameter estimation, phenomenological model, statistical analysis
A phenomenological multi-response multi-parameter Acetone−Butanol−Ethanol fermentation dynamic model is developed and calibrated for fermentation process studies. The model was constructed based on other models reported in the literature and was calibrated with a maximum likelihood parameter estimation over Acetone−Butanol−Ethanol fermentation experimental data from the literature. After parameter estimation, a rigorous statistical analysis was conducted to evaluate standard deviations of estimated parameters and predicted responses as well as their respective 95% probability confidence intervals for correct parameters and responses. The significance of parameters was assessed via a Fisher’s F test. From the Base-Model with 17 parameters, a tight, more compact, Reduced-Model was developed with 9 highly significant parameters after deleting 8 nonsignificant parameters from the Base-Model and re-estimating the remaining 9 parameters. This Reduced-Model showed good adherence to the experi... [more]
Influence of the Ni-Co/Al-Mg Catalyst Loading in the Continuous Aqueous Phase Reforming of the Bio-Oil Aqueous Fraction
Pablo Lozano, Ana I. Simón, Lucía García, Joaquín Ruiz, Miriam Oliva, Jesús Arauzo
October 14, 2021 (v1)
Keywords: acetic acid, acetol, aqueous fraction, aqueous phase reforming, bio-oil, Butanol, Ni catalyst
The effect of catalyst loading in the Aqueous Phase Reforming (APR) of bio-oil aqueous fraction has been studied with a Ni-Co/Al-Mg coprecipitated catalyst. Because of the high content of water in the bio-oil aqueous fraction, APR could be a useful process to convert this fraction into valuable products. Experiments of APR with continuous feeding of aqueous solution of acetol, butanol and acetic acid as the only compound, together with a simulated and a real aqueous fraction of bio-oil, were carried out. Liquid products in the liquid effluent of the APR model compounds were quantified and the reaction pathways were revised. The increase of catalyst loading produced an increase of gas production and a gas with higher alkanes content. Acetol was the compound with the highest reactivity while the conversion of acetic acid was very low. The presence of acetic acid in the feed caused catalyst deactivation.
Aspen Plus Simulations of a Lignocellulosic Biomass-to-Butanol Thermochemical Process
Chinedu Okoli, Thomas A Adams II
July 6, 2021 (v1)
Keywords: Aspen Plus, Biofuels, Biomass, Butanol, Kinetic Model, Lignocellulosic, Mixed Alcohol Synthesis, Simulation, Thermochemical
Several Aspen Plus simulation files are presented which were used in the research paper by Chinedu Okoli and Thomas A. Adams II: "Design and Assessment of Advanced Thermochemical Plants for Second Generation Biobutanol Production Considering Mixed Alcohols Synthesis Kinetics" published in Industrial and Engineering Chemistry Research, vol 56, pp 1543-1558 (2017). Four Aspen Plus V8.4 workbook files are provided AS IS, with no guarantee of accuracy or functionality. They are the original files used in the underlying work and have not been groomed or sanitized.

The four base cases considered in this study are:

1. A "biomass only" process in which the entire plant's energy supply comes from biomass.
2. A "biomass only" process that uses a divided wall column as a part of the distillation sequence
3. A "NG and power import" process in which natural gas and grid electricity are used to provide supplementary power.
4. A "NG import" case in which natural gas (but not grid... [more]
Aspen Plus Simulations of a Macroalgae-to-Biobutanol Thermochemical Process
Chinedu Okoli, Thomas A Adams II, Boris Brigljević, J. Jay Liu
July 2, 2021 (v1)
Keywords: Aspen Plus, Biobutanol, Biofuels, Butanol, Macroalgae, Seaweed, Thermochemical Route
Three Aspen Plus simulation files are presented which were used in the research paper by Chinedu Okoli, Thomas A. Adams II, Boris Brigljevic, and J.J. Liu: "Design and economic analysis of a macroalgae-to-butanol process via a thermochemical route" published in Energy Conversion and Management, vol 123, pp 410-122 (2016). Three Aspen Plus V8 workbook files are provided AS IS, with no guarantee of accuracy or functionality. They are the original files used in the underlying work and have not been groomed or sanitized.

The three files correspond to the three case studies in the paper:

1. A "biomass only" process in which the entire plant's energy supply comes from seaweed.
2. A "NG and power import" process in which natural gas and grid electricity are used to provide supplementary power.
3. A "NG import" case in which natural gas (but not grid electricity) is used to provide supplementary power.

It may be difficult to open the files in later versions of the software.... [more]
Batch Syngas Fermentation by Clostridium carboxidivorans for Production of Acids and Alcohols
Fabiana Lanzillo, Giacomo Ruggiero, Francesca Raganati, Maria Elena Russo, Antonio Marzocchella
February 22, 2021 (v1)
Keywords: Butanol, Clostridium carboxidivorans, Ethanol, growth kinetics, Syngas
Syngas (CO, CO2, and H2) has attracted special attention due to the double benefit of syngas fermentation for carbon sequestration (pollution reduction), while generating energy. Syngas can be either produced by gasification of biomasses or as a by-product of industrial processes. Only few microorganisms, mainly clostridia, were identified as capable of using syngas as a substrate to produce medium chain acids, or alcohols (such as butyric acid, butanol, hexanoic acid, and hexanol). Since CO plays a critical role in the availability of reducing equivalents and carbon conversion, this work assessed the effects of constant CO partial pressure (PCO), ranging from 0.5 to 2.5 atm, on cell growth, acid production, and solvent production, using Clostridium carboxidivorans. Moreover, this work focused on the effect of the liquid to gas volume ratio (VL/VG) on fermentation performances; in particular, two VL/VG were considered (0.28 and 0.92). The main results included—(a) PCO affected the grow... [more]
Self-Synchronized Oscillatory Metabolism of Clostridium pasteurianum in Continuous Culture
Erin E Johnson, Lars Rehmann
March 12, 2020 (v1)
Subject: Biosystems
Keywords: Butanol, Clostridium, CSTR, glycerol, metabolism, oscillatory, pasteurianum, redox, synchronized
By monitoring the real-time gas production (CO2 and H2) and redox potential at high sampling frequency in continuous culture of Clostridium pasteurianum on glycerol as sole carbohydrate, the self-synchronized oscillatory metabolism was revealed and studied. The oscillations in CO2 and H2 production were in sync with each other and with both redox potential and glycerol in the continuous stirred tank reactor (CSTR). There is strong evidence that the mechanism for this is in the regulation of the oxidative pathway of glycerol metabolism, including glycolysis, and points toward complex, concerted cycles of enzyme inhibition and activation by pathway intermediates and/or redox equivalents. The importance of understanding such an “oscillatory metabolism” is for developing a stable and highly productive industrial fermentation process for butanol production, as unstable oscillations are unproductive. It is shown that the oscillatory metabolism can be eradicated and reinstated and that the pe... [more]
Effect of Fuel Injection Strategy on the Carbonaceous Structure Formation and Nanoparticle Emission in a DISI Engine Fuelled with Butanol
Simona Silvia Merola, Adrian Irimescu, Silvana Di Iorio, Bianca Maria Vaglieco
December 10, 2019 (v1)
Keywords: Butanol, direct injection, Gasoline, nanoparticle emissions, optical investigations, spark ignition engine
Within the context of ever wider expansion of direct injection in spark ignition engines, this investigation was aimed at improved understanding of the correlation between fuel injection strategy and emission of nanoparticles. Measurements performed on a wall guided engine allowed identifying the mechanisms involved in the formation of carbonaceous structures during combustion and their evolution in the exhaust line. In-cylinder pressure was recorded in combination with cycle-resolved flame imaging, gaseous emissions and particle size distribution. This complete characterization was performed at three injection phasing settings, with butanol and commercial gasoline. Optical accessibility from below the combustion chamber allowed visualization of diffusive flames induced by fuel deposits; these localized phenomena were correlated to observed changes in engine performance and pollutant species. With gasoline fueling, minor modifications were observed with respect to combustion parameters... [more]
Assessment of feasibility and benefits of replacing bioethanol with biobutanol in the transportation fuels industry
Merissa Wiebe, Thomas Alan Adams II
November 21, 2018 (v1)
Subject: Energy Policy
Keywords: Biobutanol, Butanol, Ethanol, Transportation Fuels
In recent years there has been a strong drive towards transitioning the transportation fuels market to a sustainable alternative. Biofuels has emerged as one of the solutions and is receiving a great deal of focus in research, industry, and politics. Ethanol is currently the most popular biofuel, but butanol has been acknowledged as a superior alternative in several regards. In this paper, the chemical and physical properties of butanol are compared to ethanol and gasoline. In addition, the feasibility of a butanol-based economy is assessed in terms of available supply, compatibility in spark ignition engines in terms of performance and emissions, and ability to easily transport, store, and dispense the fuel. Life cycle assessments of biobutanol are also reviewed, which ultimately suggest that butanol has the potential to be a sustainable alternative. However, the yield of biobutanol production via ABE fermentation, the primary process currently utilized to produce the fuel, is low. Ad... [more]
Techno-economic comparison of Acetone-Butanol-Ethanol fermentation using various extractants
Giancarlo Dalle Ave, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Acetone, Butanol, Cost of CO2 Emissions Avoided, Ethanol, Extraction, Fermentation, Technoeconomic Analysis
This work compares various chemicals for use as extractants in second-generation Acetone-Butanol-Ethanol fermentation on economic and environmental bases. Both non-toxic and toxic extractants are considered in this study. The combinative extractive-distillation separation process was modelled using a combination of Microsoft Excel 2013, MATLAB 2015 and Aspen Plus v8.8. Separation trains were designed and optimized for each extractant to best take advantage of extractant properties. Upstream units considered in this analysis include: biomass (switchgrass) solids processing, biomass pre-treatment and saccharification, and fermentation. Downstream processes considered include utility generation and wastewater treatment. The cost of CO2 equivalent emissions avoided (CCA) was used as the metric to compare the environmental impact of each process as compared to conventional petroleum-based gasoline. The economic and environmental best extractant is shown to be 2-ethyl-hexanol with a minimum... [more]
Techno-economic comparison of Acetone-Butanol-Ethanol fermentation using various extractants
Giancarlo Dalle Ave, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Acetone, Butanol, Cost of CO2 Emissions Avoided, Ethanol, Extraction, Fermentation, Technoeconomic Analysis
This work compares various chemicals for use as extractants in second-generation Acetone-Butanol-Ethanol fermentation on economic and environmental bases. Both non-toxic and toxic extractants are considered in this study. The combinative extractive-distillation separation process was modelled using a combination of Microsoft Excel 2013, MATLAB 2015 and Aspen Plus v8.8. Separation trains were designed and optimized for each extractant to best take advantage of extractant properties. Upstream units considered in this analysis include: biomass (switchgrass) solids processing, biomass pre-treatment and saccharification, and fermentation. Downstream processes considered include utility generation and wastewater treatment. The cost of CO2 equivalent emissions avoided (CCA) was used as the metric to compare the environmental impact of each process as compared to conventional petroleum-based gasoline. The economic and environmental best extractant is shown to be 2-ethyl-hexanol with a minimum... [more]
[Show All Keywords]