Browse
Record Types
Records with Type: Preprint
Putting the costs and benefits of Carbon Capture and Storage into perspective: A multi-sector to multi-product analysis
July 3, 2024 (v1)
Subject: Environment
Keywords: Carbon Capture and Storage, CO2 emission, Cost, Costs-benefits analysis, Industry
Carbon dioxide capture, transport, and storage (CCS) is essential in achieving the net-zero target. Despite this increasing recognition, current CCS deployments are far behind targeted ambitions. A key reason is that CCS is often perceived as too expensive. While assessments of the costs of CCS have traditionally looked at impact at the plant level, the present study seeks to understand the costs and environmental benefits that will be passed to consumers via end-products and services. In particular, nine end-products/services (bridge construction, electricity from onshore wind power, electricity from offshore wind power, transport of a container via ship, a magazine, the production and transport of an avocado, a beer can, waste treatment via waste-to-energy, and long-distance air travel) connected to ten potential areas of application for CCS (cement production, iron and steel production, oil and gas production, natural gas processing, refining, ship propulsion engines, pulp and paper... [more]
Rollling-out pioneering carbon dioxide capture and transport chains from inlad European industrial facilities: a techno-economic, environmental, and regulatory analysis
April 11, 2024 (v1)
Subject: Environment
Keywords: Carbon Capture, Carbon Dioxide, CO2 transport, environmental impact, techno-economic
Large-scale deployment of CO2 capture, transport, and storage (CCTS) requires the rolling-out of extensive value chains. In this study, we present the development, design, techno-economic, environmental, and regulatory analysis of four pioneering chains that capture and condition CO2 from existing European industrial plants and their multi-modal transport to selected ports in Northern Europe. The pioneering chains can avoid between 65% and 87% of the industrial emissions, including scope 3, with a cost of CO2 avoided ranging between 100 and 300 euro/tCO2. The economic and environmental performance of the CCTS chains are substantially affected by the geographic location of the industrial emitters and the CO2 volumes to be transported. The analysis relies on the assumption that the four industrial plants would be early movers. While, in the future, technology maturation and infrastructure development are expected to reduce costs and emissions associated with the CCTS chain, this study q... [more]
Can subsea shuttles be a cost-competitive solution for CO2 transport?
February 1, 2024 (v1)
Subject: Environment
Keywords: Carbon Capture and Storage, CO2 transport, Offshore storage, subsea shuttle, Technoeconomic Analysis
Considering the role that offshore CO2 storage is expected to play in deploying carbon capture and storage, enabling cost-efficient and flexible solutions for transporting CO2 to relevant storage locations. While several pipeline and ship-based approaches have been proposed to do so, subsea shuttles are a new concept that has also been proposed in the past couple of years. The present study seeks to understand if this new approach could be cost-efficient compared to current and upcoming ship-based transport concepts.
The result shows that the shuttle concept could be cost-competitive to currently mature 15 barg-based shipping, especially if the subsea shuttle connects to a CO2 pipeline infrastructure rather than to the reservoir directly, although cost-competitiveness is achieved only for a limited range of volumes and distances. However, it is unlikely that this concept would be cost-attractive compared to the upcoming 7 barg-based shipping, and sensitivity analyses highlight that th... [more]
The result shows that the shuttle concept could be cost-competitive to currently mature 15 barg-based shipping, especially if the subsea shuttle connects to a CO2 pipeline infrastructure rather than to the reservoir directly, although cost-competitiveness is achieved only for a limited range of volumes and distances. However, it is unlikely that this concept would be cost-attractive compared to the upcoming 7 barg-based shipping, and sensitivity analyses highlight that th... [more]
Exploring the Feasibility of Carbon Capture Onboard Ships
November 6, 2023 (v1)
Subject: Environment
Keywords: amine, Carbon Capture, Carbon Dioxide, IMO, Maritime
International shipping is crucial for global freight transport, but is mainly based on fossil fuels, leading to significant greenhouse gas (GHG) emissions. Global GHG emissions must peak by 2025 and drop by at least 43% by 2030 to limit global warming within 1.5◦C. This calls for urgent action in all sectors as well as shipping. Scaling up alternative fuels may take too long, considering technical modifications onboard the vessels, as well as fuel production and infrastructure for distribution. Many alternative fuels are also inherently dependent on access to clean electricity, which is already in a shortage. Carbon capture from ships is another route to emission reduction that can be implemented faster and without increasing the demand for renewable electricity.
Tankers, dry bulk carriers, and container vessels contribute a majority of global shipping emissions and are therefore prime candidates for carbon capture and storage. Solvent-based post-combustion capture is mature and suita... [more]
Tankers, dry bulk carriers, and container vessels contribute a majority of global shipping emissions and are therefore prime candidates for carbon capture and storage. Solvent-based post-combustion capture is mature and suita... [more]
Optimal capacity design of amine-based onboard CO2 capture systems considering flexible ship operations
October 18, 2023 (v1)
Subject: Process Design
Keywords: MEA-based CO2 capture process, Off-design performance, Onboard carbon capture, Ship engine load profile, Techno-economic assessment
The International Maritime Organization has adopted a strategy aiming for net-zero greenhouse gas emissions from international shipping, prompting various mitigation technologies to comply with this strengthened strategy. Carbon capture technologies are increasingly being considered to satisfy the IMO strategy. In particular, amine-based carbon capture technologies, which are emerging as the most mature option, have been proposed for onboard application. However, the conventional design approach for onboard carbon capture systems, which assumes a fixed high engine load (75–100%), does not reflect flexible ship operation in a low engine load range, consequently leading to oversizing and unnecessary capital investment.
This study designs five MEA-based onboard carbon capture systems with different capacities (sizes) based on the exhaust gas conditions. The study investigates the off-design performance over the entire engine load range while maintaining the capacity of the capture syste... [more]
This study designs five MEA-based onboard carbon capture systems with different capacities (sizes) based on the exhaust gas conditions. The study investigates the off-design performance over the entire engine load range while maintaining the capacity of the capture syste... [more]
What is the potential of bioCCS to deliver negative emissions in Norway? From biomass mapping to a window of negative emissions potential
October 3, 2023 (v1)
Subject: Biosystems
Keywords: BioCCS, Bioenergy, Mapping, Negative emission, Norway
Negative emissions have been highlighted as a key component of achieving the net-zero ambition. However, ground-up approaches are necessary to better understand the realistic potential of negative emissions technologies at the national or continental level. Such an approach was applied in the present study to bioenergy with carbon capture and storage in Norway, starting from mapping and quantification of biomass until the derivation of a window of negative emission potential.
The results indicate that bioenergy with carbon capture and storage could enable between 1 and 13 MtCO2/y of negative emissions, with a more probable range between 2 and 8 MtCO2/y at least in the coming decades. These values are drastically higher than the potential identified in previous studies thus highlighting the importance of bottom-up approaches, like the one adopted here, to better estimate the potential negative emissions from bioenergy with carbon capture and storage.
In terms of biomass, the strongest... [more]
The results indicate that bioenergy with carbon capture and storage could enable between 1 and 13 MtCO2/y of negative emissions, with a more probable range between 2 and 8 MtCO2/y at least in the coming decades. These values are drastically higher than the potential identified in previous studies thus highlighting the importance of bottom-up approaches, like the one adopted here, to better estimate the potential negative emissions from bioenergy with carbon capture and storage.
In terms of biomass, the strongest... [more]
Life cycle analyses of SOFC/gas turbine hybrid power plants accounting for long-term degradation effects
January 5, 2023 (v1)
Subject: Uncategorized
In this study, cradle-to-product life cycle analyses were conducted for a variety of natural-gas-based and coal-based SOFC power plant conceptual designs, while also accounting for long-term SOFC degradation. For each type of plant, four base case designs were considered: a standalone SOFC plant, a standalone SOFC plant with a steam cycle, an SOFC/GT hybrid plant, and an SOFC/GT hybrid plant with a steam cycle. The boundary of each base case was subsequently expanded to include either wet cooling or dry cooling options and DC to AC conversion, and was subjected to additional cradle-to-product life cycle analyses. The environmental impact results were computed using ReCiPe 2016 (H) and TRACI 2.1 V1.05 in SimaPro. The main factors affecting the midpoint impacts between cases were the plant efficiency and total SOFC manufacturing required over the plant’s lifetime, which were both strongly connected to long-term degradation effects. The findings also showed that the standalone SOFC plant... [more]
Novel approach for low CO2 intensity hydrogen from natural gas
September 20, 2022 (v1)
Subject: Process Design
Keywords: Carbon Dioxide Capture, Hydrogen production, Low emission H2, Process integration
Hydrogen from natural gas with CO2 capture can be a key transition technology to a low carbon energy system due to the abundance of natural gas and the possibility to increase the production capacity quickly. However, it is necessary to achieve both a high energy efficiency and a high CO2 capture ratio to be a viable option. The liquefaction of CO2 is one promising separation technology as it provides the captured CO2 in a transportable format. This paper therefore proposes a hydrogen production process with integrated CO2 liquefaction. Efficiencies of up to 84.7 % (Based on the higher heating value) and CO2 capture ratios of up to 97.2 % can be achieved. One advantage of the utilization of CO2 liquefaction as separation technology is furthermore the possibility to incorporate a partial recycle of the flue gas from the separation to the water–gas shift reaction, increasing both energy efficiency and carbon capture ratio.
Is CCS really so expensive? An analysis of cascading costs and CO2 emissions reduction of industrial CCS implementation applied to a bridge
July 19, 2022 (v1)
Subject: Energy Policy
Keywords: Bridge, Carbon Capture and Storage, CCS, Cement, Cost-Benefit analysis, Life Cycle Analysis, Steel, Technoeconomic Analysis
Carbon capture, transport, and storage (CCS) is an essential technology to mitigate global CO2 emissions from power and industry sectors. Despite the increasing recognition and interest in both the scientific community and stakeholders, current CCS deployment is far behind targeted ambitions. A key reason is that CCS is often perceived as too expensive to reduce CO2 emissions. The costs of CCS have however traditionally been looked at from the industrial plant point of view which does not necessarily reflect the end-user’s perspective. This paper addresses the incomplete view by investigating the impact of implementing CCS in industrial facilities on the overall costs and CO2 emissions of end-user products and services. As an example, this work examines the extent to which an increase in costs of raw materials (cement and steel) due to CCS impact the costs of building a bridge. Our results show that although CCS significantly increases the cost of cement and steel, the subsequent incre... [more]
10. LAPSE:2022.0023
Moving toward the low-carbon hydrogen economy: Experiences and key learnings from national case studies
July 7, 2022 (v1)
Subject: Interdisciplinary
Keywords: CCS, Energy transition, Integrated analysis, Low carbon hydrogen, Low-carbon economy
The recognised urgency to achieve net-zero carbon dioxide (CO2) emissions by 2050, as first presented by the IPCC special report on 1.5 °C Global Warming, has spurred a renewed interest in hydrogen as a companion to electricity for widespread decarbonization of the economy. We present reflections on the estimation of future hydrogen demand, optimization of infrastructure for production, transport and storage, development of viable business cases, and environmental impact evaluations using life cycle assessments. We highlight challenges and opportunities that are common across studies of the business cases for hydrogen in Germany, the UK, the Netherlands, Switzerland and Norway. The use of hydrogen in the industry sector is an important driver and could incentivise large-scale hydrogen value chains. In the long-term hydrogen becomes important also for the transport sector. Hydrogen production from natural gas with capture and permanent storage of the produced CO2 (CCS) enables large-sc... [more]
11. LAPSE:2021.0801
Perspectives on the Integration between First-Principles and Data-Driven Modeling
November 7, 2021 (v1)
Subject: Intelligent Systems
Keywords: gaussian process regression, hybrid modeling, Machine Learning, model calibration, neural networks, physics-informed machine learning
Efficiently embedding and/or integrating mechanistic information within data-driven models is essentially the only approach to simultaneously take advantage of both engineering principles and data-science. The opportunity for hybridization occurs in many scenarios, such as the development of a faster model of an accurate high-fidelity computer model; the correction of a mechanistic model that does not fully-capture the physical phenomena of the system; or the integration of a data-driven component approximating an unknown correlation within a mechanistic model. At the same time, different techniques have been proposed and applied in different literatures to achieve this hybridization, such as hybrid modeling, physics-informed Machine Learning (ML) and model calibration. In this paper we review the methods, challenges, applications and algorithms of these three research areas and discuss them in the context of the different hybridization scenarios. Moreover, we provide a comprehensive c... [more]
12. LAPSE:2021.0798
Optimization under uncertainty of a hybrid waste tire and natural gas feedstock flexible polygeneration system using a decomposition algorithm
April 5, 2022 (v2)
Subject: Process Design
Keywords: Decomposition Algorithm, Optimization under uncertainty, Polygeneration system, Stochastic Programming, Waste Tire, Waste-to-Energy
Market uncertainties motivate the development of flexible polygeneration systems that are able to adjust operating conditions to favor production of the most profitable product portfolio. However, this operational flexibility comes at the cost of higher capital expenditure. A scenario-based two-stage stochastic nonconvex Mixed-Integer Nonlinear Programming (MINLP) approach lends itself naturally to optimizing these trade-offs. This work studies the optimal design and operation under uncertainty of a hybrid feedstock flexible polygeneration system producing electricity, methanol, dimethyl ether, olefins or liquefied (synthetic) natural gas. The recently developed GOSSIP software framework is used for modeling the optimization problem as well as its efficient solution using the Nonconvex Generalized Benders Decomposition (NGBD) algorithm. Two different cases are studied: The first uses estimates of the means and variances of the uncertain parameters from historical data, whereas the seco... [more]
13. LAPSE:2021.0592
At what pressure shall CO2 be transported by ship? An in-depth cost comparison of 7 and 15 barg shipping.
July 7, 2021 (v1)
Subject: Optimization
Keywords: Carbon Capture and Storage, CO2 shipping, CO2 transport, Optimal transport pressure, Technoeconomic Analysis
While pipeline transport traditionally has been regarded as the best option for CO2 transport due to its low cost over short distances and important economies of scale, interest in vessel-based transport of CO2 is growing. While virtually all recent literature has focused on low pressure transport (at 7 barg and -46°C), the issue of optimal transport conditions, in terms of pressure, temperature and gas composition, is becoming more relevant as carbon capture and storage chains based on ship transport move closer towards implementation.
This study focuses on an in-depth comparison of the two primary and relevant transport pressures, 7 and 15 barg, for annual volumes up to 20 MtCO2/y and transport distances up to 2000 km. We also address the impact of a number of key factors on optimal transport conditions, including (a) transport between harbours versus transport to an offshore site, (b) CO2 pressure prior to conditioning, (c) the presence of impurities and of purity constraints, and... [more]
This study focuses on an in-depth comparison of the two primary and relevant transport pressures, 7 and 15 barg, for annual volumes up to 20 MtCO2/y and transport distances up to 2000 km. We also address the impact of a number of key factors on optimal transport conditions, including (a) transport between harbours versus transport to an offshore site, (b) CO2 pressure prior to conditioning, (c) the presence of impurities and of purity constraints, and... [more]
14. LAPSE:2021.0525
A mathematical model for prediction of long-term degradation effects in solid oxide fuel cells
June 15, 2021 (v1)
Subject: Modelling and Simulations
Keywords: anode degradation, electrolyte degradation, nickel coarsening, pore size degradation, Solid Oxide Fuel Cells, sulfur poisoning
A mathematical model of long-term solid oxide fuel cell (SOFC) degradation is proposed, based on a cross-cutting meta-study of SOFC degradation research available in the open literature. This model is able to predict long-term SOFC performance under different operating conditions, and it accounts for the main degradation mechanisms, including: Ni coarsening and oxidation; anode pore size changes; degradation of anode and electrolyte conductivity; and sulfur poisoning. The results of the study indicate that SOFCs initially degrade quickly, but that the degradation rate diminishes significantly after approximately 1200 hours of operation. Consequently, the effects of different factors associated with degradation rate are investigated, including current density, temperature, and partial pressure of H2 in fuel source. Sensitivity analyses show that current density and H2 partial pressure have the highest and the lowest impact, respectively. In addition, the model has been developed to asse... [more]
15. LAPSE:2020.1164
Data-driven Spatial Branch-and-bound Algorithm for Box-constrained Simulation-based Optimization
November 14, 2020 (v1)
Subject: Optimization
Keywords: Black-box Optimization, Branch-and-bound, Simulation-based Optimization
The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering at the same rate as computation capabilities and first-principle knowledge advance. Due to the complexity of simulation models, direct embedding of equation-based optimization solvers may be impractical and data-driven optimization techniques are often needed. In this work, we present a novel data-driven spatial branch-and-bound algorithm for simulation-based optimization problems with box constraints, aiming for consistent globally convergent solutions. The main contribution of this paper is the introduction of the concept data-driven convex underestimators of data and surrogate functions, which are employed within a spatial branch-and-bound algorithm. The algorithm is showcased by an illustrative example and is then extensively studied via computational experiments on a large set of benchmark problems.
16. LAPSE:2020.0926
Techno-economic Assessment of Optimised Vacuum Swing Adsorption for Post-Combustion CO2 capture from Steam-Methane Reformer Flue Gas
August 18, 2020 (v1)
Subject: Modelling and Simulations
Keywords: Carbon dioxide capture and storage, Metal Organic Framework, optimisation, Steam-methane reforming, Technoeconomic Analysis, vacuum swing adsorption
This study focuses on the techno-economic assessment integrated with detailed optimisation of a four step vacuum swing adsorption (VSA) process for post-combustion CO2 capture and storage (CCS) from steam-methane reformer dried flue gas containing 20 mol% CO2. The comprehensive techno-economic optimisation model developed herein takes into account VSA process model, peripheral component models, vacuum pump performance, scale-up, process scheduling and a thorough cost model. Three adsorbents, namely, Zeolite 13X and two metal-organic frameworks, UTSA-16 and IISERP MOF2 are optimised to minimise the CO2 capture cost. Monoethanolamine (MEA)-based absorption technology serves as a baseline case to assess and compare optimal techno-economic performances of VSA technology for three adsorbents. The results show that the four step VSA process with IISERP MOF2 outperforms other two adsorbents with a lowest CO2 capture cost (including flue gas pre-treatment) of 33.6 € per tonne of CO2 avoided an... [more]
17. LAPSE:2020.0925
On the application of shooting method for determining semicontinuous distillation limit cycles
August 17, 2020 (v1)
Subject: Numerical Methods and Statistics
Keywords: Hybrid Dynamical System, Limit Cycle, Optimization, Process Design, Semicontinuous Distillation
Semicontinuous distillation is a new separation technology for distilling multicomponent mixtures.
This process was designed using design methodologies with heuristic components that evolved
over twenty years. However, the fundamental philosophy of these design methodologies, which
involves guessing, checking and then using a black-box optimization procedure to find the values
of the design variables to meet some performance criteria, has not changed. Mainly, to address the
problem of having a heuristic simulation termination criterion in the black-box optimization phase,
the single shooting method for semicontinuous distillation design was proposed in this study. We
envision that this is a first step in the transformation of the semicontinuous distillation design
process for obtaining optimal designs. We demonstrate the application of this method using two
case studies, which involve the separation of hexane, heptane and octane.
This process was designed using design methodologies with heuristic components that evolved
over twenty years. However, the fundamental philosophy of these design methodologies, which
involves guessing, checking and then using a black-box optimization procedure to find the values
of the design variables to meet some performance criteria, has not changed. Mainly, to address the
problem of having a heuristic simulation termination criterion in the black-box optimization phase,
the single shooting method for semicontinuous distillation design was proposed in this study. We
envision that this is a first step in the transformation of the semicontinuous distillation design
process for obtaining optimal designs. We demonstrate the application of this method using two
case studies, which involve the separation of hexane, heptane and octane.
18. LAPSE:2020.0905
Comparison of Steel Manufacturing Off-Gas Utilization Methods via Life Cycle Analysis
July 31, 2020 (v1)
Subject: Other
Keywords: blast furnace gas, coke oven gas, combined cycle power plant, Life Cycle Analysis, methanol production
This study utilizes life cycle analysis to compare three steel manufacturing off-gas utilization systems: a status quo system, which produces electricity via a low-pressure steam turbine; a combined cycle power plant (CCPP) system, which produces electricity using gas and steam turbines; and a methanol (MeOH) system, which converts coke oven gas (COG) and blast furnace gas (BFG) into MeOH (CBMeOH). This research seeks to compare the environmental impacts of each system based on equivalent raw material inputs. Since the systems have different products, system expansion is used to ensure that they have the same outputs and are therefore comparable. The system boundary consists of a combination of cradle-to-gate and gate-to-gate boundaries. The environmental effects of each system are compared at five locations—Ontario, the USA, Finland, Mexico, and China—using TRACI, CML-IA baseline, ReCiPe2016, and IMPACT2002+ in SimaPro v9. The results show that in Ontario, Finland, and China, CBMeOH s... [more]
19. LAPSE:2020.0822
Supply Chain Monitoring Using Principal Component Analysis
July 16, 2020 (v1)
Subject: Process Monitoring
Keywords: monitoring, Multivariate Statistics, Supply Chain
Various types of risks exist in a supply chain, and disruptions could lead to economic loss or even breakdown of a supply chain without an effective mitigation strategy. The ability to detect disruptions early can help improve the resilience of the supply chain. In this paper, the application of principal component analysis (PCA) and dynamic PCA (DPCA) in fault detection and diagnosis of a supply chain system is investigated. In order to monitor the supply chain, data such as inventory levels, market demands and amount of products in transit are collected. PCA and DPCA are used to model the normal operating conditions (NOC). Two monitoring statistics, the Hotelling's T-squared and the squared prediction error (SPE), are used to detect abnormal operation of the supply chain. The confidence limits of these two statistics are estimated from the training data based on the $\chi^2$- distributions. The contribution plots are used to identify the variables with abnormal behavior when at le... [more]
20. LAPSE:2020.0530
Technoeconomic Analysis of a Waste Tire to Liquified Synthetic Natural Gas (SNG) energy system
June 1, 2020 (v1)
Subject: Process Design
Keywords: CO2 capture,, Gasification, Rubber, Synthetic Natural Gas (SNG), Waste tire, Waste-to-Energy
Thermochemical conversion of solid wastes through gasification offers the
dual benefit of production of high-value fuels and environmentally friendly
waste disposal. In this paper, we propose a novel process for production of
liquified synthetic natural gas (SNG) from waste tires via a rotary kiln gasification process. We use a combination of experimental data available in the
open literature, first principles mathematical models and empirical models to
study three design cases (without CCS, with precombustion CCS and with
pre- and postcombustion CCS) in two locations (USA and Norway). The
thermodynamic, economic and environmental performance of the concept is
studied. The results show that minimum selling prices of 16.7, 17.5 and 19.9
$/GJ_LHV,SNG are required for USA and 20.9, 21.8 and 24.9 $/GJ_LHV,SNG
for Norway. We note that these prices may become competitive under certain
regulatory conditions (such as recent public policy movement in British
Columbia, Canada requiri... [more]
dual benefit of production of high-value fuels and environmentally friendly
waste disposal. In this paper, we propose a novel process for production of
liquified synthetic natural gas (SNG) from waste tires via a rotary kiln gasification process. We use a combination of experimental data available in the
open literature, first principles mathematical models and empirical models to
study three design cases (without CCS, with precombustion CCS and with
pre- and postcombustion CCS) in two locations (USA and Norway). The
thermodynamic, economic and environmental performance of the concept is
studied. The results show that minimum selling prices of 16.7, 17.5 and 19.9
$/GJ_LHV,SNG are required for USA and 20.9, 21.8 and 24.9 $/GJ_LHV,SNG
for Norway. We note that these prices may become competitive under certain
regulatory conditions (such as recent public policy movement in British
Columbia, Canada requiri... [more]
21. LAPSE:2020.0305
Comprehensive Environmental Impact Assessment of a Combined Petroleum Coke and Natural Gas to Fischer-Tropsch Diesel Process
March 13, 2020 (v1)
Subject: Other
In this study, a well-to-wheels life cycle assessment was conducted to determine the environmental impacts from disposing of petroleum coke by converting it into liquid fuel. Specifically, three processes for converting petroleum coke and natural gas to Fischer Tropsch diesel were investigated, both with and without carbon capture and sequestration (CCS). Impact categories were calculated using the EPA’s TRACI 2.1 US-Canada 2008 midpoint method in SimaPro software. In addition, the impact of grid emissions on the overall process was assessed using two representative Canadian locations with high (Alberta) and low (Ontario) grid emissions. The results of each impact category were compared among the designs and against conventional petroleum and oil-sands derived diesel. Key findings showed that the proposed designs when operated using CCS in the low-emissions-grid location had lower life cycle GHG emissions than conventional petroleum and oil-sands derived diesel. Nevertheless, the vario... [more]
22. LAPSE:2020.0072
Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization
January 9, 2020 (v1)
Subject: Process Design
Keywords: blast furnace gas, CO2 utilization and storage, COG desulphurization, Coke oven gas, Economic and sensitivity analysis, methanol production
This paper documents a process for converting coke oven gas (COG) and blast furnace gas (BFG) from steel refineries into methanol. Specifically, we propose the use of blast furnace gas (BFG) as an additional carbon source. The high CO2 and CO content of BFG make it a good carbon resource. In the proposed process, CO2 is recovered from the BFG and blended with H2O, H2, and CH4-rich COG to reform methane. Optimized amounts of H2O and CO2 are used to adjust the (H2 – CO2)/(CO + CO2) molar ratio in order to maximize the amount of methanol that is produced. In addition, the desulphurization process was modified to enable the removal of sulfur compounds, especially thiophene, from the COG. The process design and simulation results reported herein were then used to determine any potential environmental and economic benefits. This research is based on off-gas conditions provided by ArcelorMittal Dofasco, Hamilton, Ontario. In order to determine which conditions are most desirable for this retr... [more]
23. LAPSE:2019.1262
Synthesis of feasible heat exchanger networks using attainable regions
December 9, 2019 (v2)
Subject: Process Design
Keywords: Attainable region, Energy recovery, Heat exchanger network synthesis, Heat integration, Process Synthesis
The attainable region (AR) is a region in a performance space in which all physically realizable reactor network designs must exist. ARs have been used since the 1960s for solving reactor network synthesis problems. The benefits of these methods are that the feasibility of a performance target can be assessed prior to running a synthesis routine, the solutions they give are guaranteed to be physically realizable, and a design can be made robust to uncertainties in feed and performance targets by assessing whether a solution and the range of its possible values lie within the AR, just to name a few. In this article, the theory of attainable regions is extended to bring these benefits to the heat exchanger network (HEN) synthesis problem. Basic properties of the HEN-AR are proven and a synthesis method using the AR is presented with examples.
24. LAPSE:2019.0610
Data Science-Enabled Molecular-to-Systems Engineering for Sustainable Water Treatment
October 11, 2019 (v3)
Subject: Interdisciplinary
Keywords: Bayesian optimization, design of experiments, fit-for-purpose water, inverse materials design, materials informatics, superstructure optimization, uncertainty quantification
Growing social and economic pressures demand technological innovations that enable the widespread usage of unconventional sources of water. These challenges motivate the emerging fit-for-purpose paradigm, wherein water is provided at the precise quality level of the intended application. Unfortunately, to date, fundamental advances in materials and nanotechnology have been slow to advance this paradigm. Using examples from membrane science and engineering, we highlight the critical need to bridge research at the molecular and nano-scales with development at the device and systems-scales to fully realize sustainable fit-for-purpose water technology. Specifically, we present four opportunities for computing and data science to accelerate convergence of sustainable water research: materials informatics and inverse design, model-based design of experiments, superstructure optimization, and uncertainty quantification. As such, we highlight opportunities to collaboratively revolutionize mole... [more]
25. LAPSE:2019.0609
Techno-economic and environmental analyses of a novel, sustainable process for production of liquid fuels using helium heat transfer
September 26, 2019 (v2)
Subject: Process Design
Keywords: Biomass, Carbonless heat, Dimethyl Ether, Fischer-Tropsch Synthesis, Gasification, Methane Reforming, Negative emissions
In this paper, several new processes are proposed which co-generate electricity and liquid fuels (such as diesel, gasoline, or dimethyl ether) from biomass, natural gas and heat from a high temperature gas-cooled reactor. This carbonless heat provides the required energy to drive an endothermic steam methane reforming process, which yields H2-rich syngas (H2/CO > 6) with lower greenhouse gas emissions than traditional steam methane reforming processes. Since downstream Fischer-Tropsch, methanol, or dimethyl ether synthesis processes require an H2/CO ratio of around 2, biomass gasification is integrated into the process. Biomass-derived syngas is sufficiently H2-lean such that blending it with the steam methane reforming derived syngas yields a syngas of the appropriate H2/CO ratio of around 2. In a prior work, we also demonstrated that integrating carbonless heat with combined steam and CO2 reforming of methane is a promising option to produce a syngas with proper H2/CO ratio for Fisch... [more]