Keywords
Records with Keyword: Aspen Plus
Petroleum coke and Natural gas-To-Liquids Aspen Plus Simulation
Ikenna J Okeke, Thomas A Adams II
July 19, 2018 (v1)
Keywords: Aspen Plus, Fischer-Tropsch Synthesis, Integrated Reforming, Petroleum Coke
Six Aspen Plus simulation files for the conversion of petroleum coke and/or natural gas to liquid fuels (synthetic gasoline and diesel) are presented. The base simulation files were designed with carbon capture and sequestration (CCS) technology with the corresponding plant without CCS.

The processes may include various technologies such as petcoke gasification, integrated gasification and autothermal natural gas reforming, gas cleaning, water gas shift reaction, MDEA based carbon capture, Claus process, FT synthesis, and other processing steps.

The six processes are: PSG_CCS (petcoke standalone gasification with CCS), PSG_No_CCS (petcoke standalone gasification without CCS), PG-INGR_CCS (petcoke gasification integrated natural gas reformer with CCS), PG-INGR_No_CCS (petcoke gasification integrated natural gas reformer without CCS), PG-ENGR_CCS (petcoke gasification external natural gas reformer with CCS), PG-ENGR_No_CCS (petcoke gasification external natural gas reformer with... [more]
Space-constrained purification of dimethyl ether through process intensification using semicontinuous dividing wall columns
Sarah E. Ballinger, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Aspen Plus, Dimethyl Ether, Dividing wall column, Mobile Plant, Plant-on-a-truck, Process Intensification, Semicontinuous Distillation, Simulation
In this work, a distillation system is designed to purify dimethyl ether (DME) from its reaction by-products in the conversion of flare gas into a useful energy product. The distillation equipment has a size constraint for easy transportation, making process intensification the best strategy to efficiently separate the mixture. The process intensification distillation techniques explored include the dividing wall column (DWC) and a novel semicontinuous dividing wall column (S-DWC). The DWC and the S-DWC both purify DME to fuel grade purity along with producing high purity waste streams. An economic comparison is made between the two systems. The DWC is a cheaper method of producing DME however the purity of methanol, a reaction intermediate, is not as high as the S-DWC. Overall, this research shows that it is possible to purify DME and its reaction by-products in a 40-foot distillation column at a cost that is competitive with Diesel.
Biomass-Gas-and-Nuclear-To-Liquids Aspen Plus Simulations
Leila Hoseinzade, Thomas A. Adams II
June 12, 2018 (v1)
Aspen Plus simulation for eight different chemical processes. Each simulation corresponds to a process which convert biomass, natural gas, and in some cases, nuclear energy, into either dimethyl ether (DME) or Fischer-Tropsch liquids (synthetic gasoline and diesel). Some processes contain carbon capture and sequestration (CCS) steps.

The processes may include various technologies such as biomass gasification, steam methane reforming, integrated gasification and natural gas reforming, integrated high temperature gas-cooled reactors and natural gas reforming, water gas shift reaction, FT synthesis, DME synthesis, MEA or MDEA based carbon capture, gas combustion turbines, gas cleaning, and other processing steps. Nuclear energy, when used, is integrated into the system via a high temperature helium coolant as an energy carrier from certain kinds of Gen IV nuclear reactors.

The eight processes are: BGNTL-FT (biomass-gas-nuclear-to-liquids with FT synthesis), BGNTL-FT-CCS (the same w... [more]
[Show All Keywords]