Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Browse
Keywords
Records with Keyword: Aspen Plus
Teaching Conceptual Process Flowsheeting and Simulation: 3rd Year Undergraduate Level and Earlier
February 14, 2022 (v1)
Subject: Education
Keywords: Aspen Plus, Conceptual Process Design, Process Modelling, Process Synthesis, Undergraduate Curriculum
Advice and best practices for teaching conceptual process flowsheeting, simulation, and design at the third year undergraduate level. Discusses setting course goals, integration with the rest of the curriculum, and delivery techniques. Practical strategies for tutorials, exams, lectures, and projects. Training TAs for experiential learning workshops. Best practices in teaching distillation design. This is the Award Lecture for AIChE's David Himmelblau Award for Innovations in Computer-Based Chemical Engineering Education. Live lecture given via APMonitor.com as a part of the AIChE's Computing and Systems Technology division webinar series.
Learn Aspen Plus in 24 Hours 2nd Edition Solution Files
January 6, 2022 (v1)
Subject: Modelling and Simulations
Keywords: Aspen Plus, Education, Learn Aspen Plus in 24 Hours, Simulation
These Aspen Plus v12 simulations are the solution or demonstration files for the book Learn Aspen Plus in 24 Hours, 2nd Edition, by Thomas A. Adams II. They are given as-is with no warranty or guarantee of accuracy or correctness. They are for educational purposes only.
The files list contains a large .zip of all files, or otherwise you can download them independently.
Files correspond to these tutorials:
Tutorial 2 Physical Property Modelling - Selecting physical properties. Understanding the database.
Tutorial 3 Problem Solving Tools - Design Specs and Sensitivity Analyses
Tutorial 4 Heat Exchangers - HEATER, HEATX
Tutorial 5 Equilibrium-based Distillation Models - RadFrac (in equilibrium mode)
Tutorial 6 Advanced Problem Solving Tools - Utilities, GHG Emissions, Optimization
Tutorial 7 Chemical Reactor Models - RSTOIC, REQUIL, RYIELD, RGIBBS, RCSTR, RPFR
Tutorial 8 Rate-based Distillation Models - RadFrac (in rate-based mode)
Tutorial 9 Custom Models and External Con... [more]
The files list contains a large .zip of all files, or otherwise you can download them independently.
Files correspond to these tutorials:
Tutorial 2 Physical Property Modelling - Selecting physical properties. Understanding the database.
Tutorial 3 Problem Solving Tools - Design Specs and Sensitivity Analyses
Tutorial 4 Heat Exchangers - HEATER, HEATX
Tutorial 5 Equilibrium-based Distillation Models - RadFrac (in equilibrium mode)
Tutorial 6 Advanced Problem Solving Tools - Utilities, GHG Emissions, Optimization
Tutorial 7 Chemical Reactor Models - RSTOIC, REQUIL, RYIELD, RGIBBS, RCSTR, RPFR
Tutorial 8 Rate-based Distillation Models - RadFrac (in rate-based mode)
Tutorial 9 Custom Models and External Con... [more]
Valorization of Biomass Pyrolysis By-Products for Heat Production in the Ontario Steel Industry: A Techno-Economic Analysis
November 5, 2021 (v1)
Subject: Process Design
As part of efforts to reduce carbon emissions in the iron and steel industry, which are especially pertinent in Canada due to rising carbon taxes, Canadian producers have been investigating the effects of replacing coal used in pulverized coal injection with biochar. Although there has been research into the economic value and effect on net life cycle emissions of using the biochar product itself, there are no comprehensive techno-economic analyses which investigate the value and potential uses of the by-products of biomass pyrolysis. These by-products include volatile organic compounds, known collectively as tar or bio-oil, and light gases, which are mainly hydrogen, carbon monoxide, carbon dioxide, and methane. Since only 20-30% of the mass of pyrolyzed biomass is actually converted to char, with the rest converted to the by-products, [1] usage of these by-products is likely the key to increasing the value of biochar to a degree that makes up for the market price of biochar currently... [more]
Simulation of Prosopis juliflora Air Gasification in Multistage Fluidized Process
July 29, 2021 (v1)
Subject: Modelling and Simulations
Keywords: Aspen Plus, fluidized-bed, multistage gasifier
A multistage atmospheric fluidized bed gasifier was developed using the Aspen Plus simulation process. The innovative gasification reactor aims to yield a high-quality product gas as it conducts pyrolysis, combustion, and reduction in different zones. In addition, it uses gas as a heat carrier and has a fluidized char bed in the reduction zone to enhance the in-situ tar reduction. In order to study the feasibility of the gasifier, an evaluation of the product gas and the process efficiency is required. The proposed model was based on the reaction rates and hydrodynamic parameters of the bubbling bed. Four different stages were initially considered in the simulation process: decomposition of the feed, partial volatile combustion, char reduction, and gas solid separation. The gasification reactor was operated over a temperature range of 800−1000 °C and an isothermal combustion reactor was operated at 1000 °C. In addition, the air to biomass mass ratio was varied from 0.2 to 0.5. It has b... [more]
Aspen Plus Simulations of a Lignocellulosic Biomass-to-Butanol Thermochemical Process
July 6, 2021 (v1)
Subject: Modelling and Simulations
Keywords: Aspen Plus, Biofuels, Biomass, Butanol, Kinetic Model, Lignocellulosic, Mixed Alcohol Synthesis, Simulation, Thermochemical
Several Aspen Plus simulation files are presented which were used in the research paper by Chinedu Okoli and Thomas A. Adams II: "Design and Assessment of Advanced Thermochemical Plants for Second Generation Biobutanol Production Considering Mixed Alcohols Synthesis Kinetics" published in Industrial and Engineering Chemistry Research, vol 56, pp 1543-1558 (2017). Four Aspen Plus V8.4 workbook files are provided AS IS, with no guarantee of accuracy or functionality. They are the original files used in the underlying work and have not been groomed or sanitized.
The four base cases considered in this study are:
1. A "biomass only" process in which the entire plant's energy supply comes from biomass.
2. A "biomass only" process that uses a divided wall column as a part of the distillation sequence
3. A "NG and power import" process in which natural gas and grid electricity are used to provide supplementary power.
4. A "NG import" case in which natural gas (but not grid... [more]
The four base cases considered in this study are:
1. A "biomass only" process in which the entire plant's energy supply comes from biomass.
2. A "biomass only" process that uses a divided wall column as a part of the distillation sequence
3. A "NG and power import" process in which natural gas and grid electricity are used to provide supplementary power.
4. A "NG import" case in which natural gas (but not grid... [more]
Aspen Plus Simulations of a Macroalgae-to-Biobutanol Thermochemical Process
July 2, 2021 (v1)
Subject: Modelling and Simulations
Three Aspen Plus simulation files are presented which were used in the research paper by Chinedu Okoli, Thomas A. Adams II, Boris Brigljevic, and J.J. Liu: "Design and economic analysis of a macroalgae-to-butanol process via a thermochemical route" published in Energy Conversion and Management, vol 123, pp 410-122 (2016). Three Aspen Plus V8 workbook files are provided AS IS, with no guarantee of accuracy or functionality. They are the original files used in the underlying work and have not been groomed or sanitized.
The three files correspond to the three case studies in the paper:
1. A "biomass only" process in which the entire plant's energy supply comes from seaweed.
2. A "NG and power import" process in which natural gas and grid electricity are used to provide supplementary power.
3. A "NG import" case in which natural gas (but not grid electricity) is used to provide supplementary power.
It may be difficult to open the files in later versions of the software.... [more]
The three files correspond to the three case studies in the paper:
1. A "biomass only" process in which the entire plant's energy supply comes from seaweed.
2. A "NG and power import" process in which natural gas and grid electricity are used to provide supplementary power.
3. A "NG import" case in which natural gas (but not grid electricity) is used to provide supplementary power.
It may be difficult to open the files in later versions of the software.... [more]
Design Strategies for Oxy-Combustion Power Plant Captured CO2 Purification
June 28, 2021 (v1)
Subject: Modelling and Simulations
This submission contains Aspen Plus files for the design and systems performance analysis of oxy-combustion power plant captured CO2 purification using different techniques.
Aspen Plus Simulations of Acetone-Butanol-Ethanol Separation and Recovery Processes
April 27, 2021 (v1)
Subject: Modelling and Simulations
Keywords: 2-ethyl-hexanol, Acetone-Butanol-Ethanol, Aspen Plus, Decane, Decanol, Extracton, Fermentation, Hexanol, Oleyl Alcohol, Simulation
This is a collection of Aspen Plus v8.8 Simulation Files that were used to conduct the research published in Dalle Ave G, Adams TA II, "Techno-economic comparison of Acetone-Butanol-Ethanol fermentation using various extractants", Energy Conversion and Management, Volume 156, 15 January 2018, Pages 288-300. The LAPSE postprint of this work is available at LAPSE:2018.0132.
Each simulation file contains a flowsheet model of the process to recover acetone, butanol, and ethanol from the ABE fermentation broth for the following case studies:
1. Direct distillation of the ABE Broth
2. Product extraction and purification from ABE Broth using 2-Ethyl-1-Hexanol
3. Product extraction and purification from ABE Broth using Decane
4. Product extraction and purification from ABE Broth using Decanol
5. Product extraction and purification from ABE Broth using Hexanol
6. Product extraction and purification from ABE Broth using Mesitylene
7. Product extraction and purification from ABE... [more]
Each simulation file contains a flowsheet model of the process to recover acetone, butanol, and ethanol from the ABE fermentation broth for the following case studies:
1. Direct distillation of the ABE Broth
2. Product extraction and purification from ABE Broth using 2-Ethyl-1-Hexanol
3. Product extraction and purification from ABE Broth using Decane
4. Product extraction and purification from ABE Broth using Decanol
5. Product extraction and purification from ABE Broth using Hexanol
6. Product extraction and purification from ABE Broth using Mesitylene
7. Product extraction and purification from ABE... [more]
Aspen Plus Simulation of a Rectisol Process for Blue Hydrogen Production
March 12, 2021 (v2)
Subject: Modelling and Simulations
Keywords: Aspen Plus, Carbon Dioxide Capture, Hydrogen, Methanol, Modelling, Rectisol, Simulation, Syngas
This is an Aspen Plus v12 model for a Rectisol process used for removing CO2 from a shifted syngas stream arising from steam methane reforming for the purposes of Blue hydrogen production. It is intended for educational use, and is useful as a starting point for those interested in simulating this process. It is not optimized in any way, but it contains a working flowsheet for those interested in modifying it for your own purposes.
The simulation was developed using the simulation strategy given in Adams TA II, Khojestah Salkuyeh Y, Nease J. Processes and Simulations for Solvent-based CO2Capture and Syngas Cleanup. Chapter in: Reactor and process design for in sustainable energy technology. Elsevier (2014). Pages 163-232. ISBN: 978-0-444-59566-9. It is based on the process discussed in Doctor RD, Molburg JC, Thimmapuram PR, Berry GF, Livengood CD. Gasification combined cycle: carbon dioxide recovery, transport, and disposal. US DOE Report, Argonne National Laboratory ANL/ESD-24. 19... [more]
The simulation was developed using the simulation strategy given in Adams TA II, Khojestah Salkuyeh Y, Nease J. Processes and Simulations for Solvent-based CO2Capture and Syngas Cleanup. Chapter in: Reactor and process design for in sustainable energy technology. Elsevier (2014). Pages 163-232. ISBN: 978-0-444-59566-9. It is based on the process discussed in Doctor RD, Molburg JC, Thimmapuram PR, Berry GF, Livengood CD. Gasification combined cycle: carbon dioxide recovery, transport, and disposal. US DOE Report, Argonne National Laboratory ANL/ESD-24. 19... [more]
10. LAPSE:2019.1413
Simulation of Steam Gasification in a Fluidized Bed Reactor with Energy Self-Sufficient Condition
December 10, 2019 (v1)
Subject: Modelling and Simulations
Keywords: Aspen Plus, energy self-sufficient, fluidized bed gasifier, life cycle assessment (LCA)
The biomass gasification process is widely accepted as a popular technology to produce fuel for the application in gas turbines and Organic Rankine Cycle (ORC). Chemical reactions of this process can be separated into three reaction zones: pyrolysis, combustion, and reduction. In this study, sensitivity analysis with respect to three input parameters (gasification temperature, equivalence ratio, and steam-to-biomass ratio) has been carried out to achieve energy self-sufficient conditions in a steam gasification process under the criteria that the carbon conversion efficiency must be more than 70%, and carbon dioxide gas is lower than 20%. Simulation models of the steam gasification process have been carried out by ASPEN Plus and validated with both experimental data and simulation results from Nikoo & Mahinpey (2008). Gasification temperature of 911 °C, equivalence ratio of 0.18, and a steam-to-biomass ratio of 1.78, are considered as an optimal operation point to achieve energy se... [more]
11. LAPSE:2019.1198
Energetic and Exergetic Investigations of Hybrid Configurations in an Absorption Refrigeration Chiller by Aspen Plus
November 24, 2019 (v1)
Subject: Process Design
Keywords: absorption refrigeration, Aspen Plus, exergetic analysis, hybrid cycles, simulation model
In the present study, a steady-state simulation model was built and validated by Aspen Plus to assess the performance of an absorption refrigeration chiller according to the open literature. Given the complex heat transfer happening in the absorbers and the generator, several assumptions were proposed to simplify the model, for which a new parameter ε l i q was introduced to describe the ratio of possible heat that could be recovered from the absorption and heat-transferring process in the solution cooling absorber. The energetic and the exergetic investigations of a basic cycle and hybrid cycles were conducted, in which the following parameters were analyzed: coefficient of performance (COP), exergetic efficiency, exergy destruction, and irreversibility. According to the results, the basic cycle exhibited major irreversibility in the absorbers and the generator. Subsequently, two proposed novel configurations were adopted to enhance its performance; the first (configuratio... [more]
12. LAPSE:2019.0942
Optimization of Post Combustion CO2 Capture from a Combined-Cycle Gas Turbine Power Plant via Taguchi Design of Experiment
August 8, 2019 (v1)
Subject: Process Design
The potential of carbon capture and storage to provide a low carbon fossil-fueled power generation sector that complements the continuously growing renewable sector is becoming ever more apparent. An optimization of a post combustion capture unit employing the solvent monoethanolamine (MEA) was carried out using a Taguchi design of experiment to mitigate the parasitic energy demands of the system. An equilibrium-based approach was employed in Aspen Plus to simulate 90% capture of the CO2 emitted from a 600 MW natural gas combined-cycle gas turbine power plant. The effects of varying the inlet flue gas temperature, absorber column operating pressure, amount of exhaust gas recycle, and amine concentration were evaluated using signal to noise ratios and analysis of variance. The optimum levels that minimized the specific energy requirements were a: flue gas temperature = 50 °C; absorber pressure = 1 bar; exhaust gas recirculation = 20% and; amine concentration = 35 wt%, with a relative im... [more]
13. LAPSE:2019.0423
Finding better limit cycles of semicontinuous distillation
March 22, 2019 (v1)
Subject: Process Design
There are three different ways of operating the distillation process based on production requirements and operational flexibility. Semicontinuous distillation of multicomponent mixtures is a cost-effective technology in the intermediate production range when compared with traditional batch and continuous distillation processes. The process, which has both continuous and discrete dynamics, operates in a limit cycle (an isolated periodic orbit). Design of this process entails finding the system’s time-invariant parameters, for example, equipment design parameters, reflux rate etc., to operate in a limit cycle having acceptable performance. In semicontinuous distillation studies, the performance metric chosen is the separation cost, which is defined as the total annualized cost-per-production. The state-of-the-art design procedure involves determining an initial state for estimating the limit cycle through the dynamic simulation of the process and is found to be effective. However, it lac... [more]
14. LAPSE:2019.0331
Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS
February 27, 2019 (v1)
Subject: Process Design
Keywords: Aspen Plus, coefficient of performance (COP), dual heat source, heat pump, household water heater, preheater
This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP) and wastewater source heat pump (WSHP) technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP) of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and c... [more]
15. LAPSE:2018.0394
Aspen Plus Simulation of Biomass-Gas-and-Nuclear-To-Liquids (BGNTL) Processes (Using CuCl Route)
August 7, 2018 (v1)
Subject: Process Design
Keywords: Aspen Plus, Biomass, Copper-Chloride, Dimethyl Ether, Fischer-Tropsch Synthesis, Methane Reforming, Methanol, Modelling, Natural Gas, Nuclear
These are Aspen Plus simulation files for a Biomass-Gas-and-Nuclear-To-Liquids chemical plant (a conceptional design), which uses the Copper-Chloride route for hydrogen production. This is a part of a larger work (see linked LAPSE record for pre-print and associated publication in Canadian J Chem Eng). Process sections and major units in this simulation include: Gasification, Integrated-Gasification-Methane-Reforming, Pre-Reforming, Water Gas Shift, Autothermal Reforming, Syngas Blending and Upgrading, Solid Oxide Fuel Cell power islands, Fischer-Tropsch Synthesis, Methanol Synthesis, Dimethyl Ether Synthesis, Heat Recovery and Steam Generation, CO2 Compression for Sequestration, Cooling Towers, and various auxiliary units for heat and pressure management. See the linked work for a detailed description of the model.
16. LAPSE:2018.0148
Petroleum coke and Natural gas-To-Liquids Aspen Plus Simulation
July 19, 2018 (v1)
Subject: Modelling and Simulations
Six Aspen Plus simulation files for the conversion of petroleum coke and/or natural gas to liquid fuels (synthetic gasoline and diesel) are presented. The base simulation files were designed with carbon capture and sequestration (CCS) technology with the corresponding plant without CCS.
The processes may include various technologies such as petcoke gasification, integrated gasification and autothermal natural gas reforming, gas cleaning, water gas shift reaction, MDEA based carbon capture, Claus process, FT synthesis, and other processing steps.
The six processes are: PSG_CCS (petcoke standalone gasification with CCS), PSG_No_CCS (petcoke standalone gasification without CCS), PG-INGR_CCS (petcoke gasification integrated natural gas reformer with CCS), PG-INGR_No_CCS (petcoke gasification integrated natural gas reformer without CCS), PG-ENGR_CCS (petcoke gasification external natural gas reformer with CCS), PG-ENGR_No_CCS (petcoke gasification external natural gas reformer with... [more]
The processes may include various technologies such as petcoke gasification, integrated gasification and autothermal natural gas reforming, gas cleaning, water gas shift reaction, MDEA based carbon capture, Claus process, FT synthesis, and other processing steps.
The six processes are: PSG_CCS (petcoke standalone gasification with CCS), PSG_No_CCS (petcoke standalone gasification without CCS), PG-INGR_CCS (petcoke gasification integrated natural gas reformer with CCS), PG-INGR_No_CCS (petcoke gasification integrated natural gas reformer without CCS), PG-ENGR_CCS (petcoke gasification external natural gas reformer with CCS), PG-ENGR_No_CCS (petcoke gasification external natural gas reformer with... [more]
17. LAPSE:2018.0141
Application of a Two-Level Rolling Horizon Optimization Scheme to a Solid-Oxide Fuel Cell and Compressed Air Energy Storage Plant for the Optimal Supply of Zero-Emissions Peaking Power
June 19, 2018 (v1)
Subject: Process Operations
Keywords: Aspen Plus, Carbon Capture, Compressed Air Energy Storage, Optimization, Rolling Horizon Optimization, Simulation, Solid Oxide Fuel Cells
We present a new two-level rolling horizon optimization framework applied to a zero-emissions coal-fueled solid-oxide fuel cell power plant with compressed air energy storage for peaking applications. Simulations are performed where the scaled hourly demand for the year 2014 from the Ontario, Canada market is met as closely as possible. It was found that the proposed two-level strategy, by slowly adjusting the SOFC stack power upstream of the storage section, can improve load-following performance by 86% compared to the single-level optimization method proposed previously. A performance analysis indicates that the proposed approach uses the available storage volume to almost its maximum potential, with little improvement possible without changing the system itself. Further improvement to load-following is possible by increasing storage volumes, but with diminishing returns. Using an economically-focused objective function can improve annual revenue generation by as much as 6.5%, but no... [more]
18. LAPSE:2018.0135
Space-constrained purification of dimethyl ether through process intensification using semicontinuous dividing wall columns
June 12, 2018 (v1)
Subject: Process Design
Keywords: Aspen Plus, Dimethyl Ether, Dividing wall column, Mobile Plant, Plant-on-a-truck, Process Intensification, Semicontinuous Distillation, Simulation
In this work, a distillation system is designed to purify dimethyl ether (DME) from its reaction by-products in the conversion of flare gas into a useful energy product. The distillation equipment has a size constraint for easy transportation, making process intensification the best strategy to efficiently separate the mixture. The process intensification distillation techniques explored include the dividing wall column (DWC) and a novel semicontinuous dividing wall column (S-DWC). The DWC and the S-DWC both purify DME to fuel grade purity along with producing high purity waste streams. An economic comparison is made between the two systems. The DWC is a cheaper method of producing DME however the purity of methanol, a reaction intermediate, is not as high as the S-DWC. Overall, this research shows that it is possible to purify DME and its reaction by-products in a 40-foot distillation column at a cost that is competitive with Diesel.
19. LAPSE:2018.0126
Biomass-Gas-and-Nuclear-To-Liquids Aspen Plus Simulations
December 7, 2018 (v2)
Subject: Modelling and Simulations
Keywords: Aspen Plus, Biomass, Dimethyl Ether, Fischer-Tropsch Synthesis, Natural Gas, Nuclear, Simulation, Steam Reforming
In this paper, several new processes are proposed which co-generate electricity and liquid fuels (such as diesel, gasoline, or dimethyl ether) from biomass, natural gas and heat from a high temperature gas-cooled reactor. This carbonless heat provides the required energy to drive an endothermic steam methane reforming process, which yields H2-rich syngas (H2/CO>6) with lower greenhouse gas emissions than traditional steam methane reforming processes. Since downstream Fischer-Tropsch, methanol, or dimethyl ether synthesis processes require an H2/CO ratio of around 2, biomass gasification is integrated into the process. Biomass-derived syngas is sufficiently H2-lean such that blending it with the steam methane reforming derived syngas yields a syngas of the appropriate H2/CO ratio of around 2. In a prior work, we also demonstrated that integrating carbonless heat with combined steam and CO2 reforming of methane is a promising option to produce a syngas with proper H2/CO ratio for Fischer... [more]