Browse
Keywords
Records with Keyword: gProms
Effect of Gas Recycling on the Performance of a Moving Bed Temperature-Swing (MBTSA) Process for CO₂ Capture in a Coal Fired Power Plant Context
Giorgia Mondino, Carlos A. Grande, Richard Blom
December 10, 2019 (v1)
Keywords: adsorbents, Carbon Dioxide Capture, gas recycling, gProms, moving bed, post-combustion, process modelling, temperature-swing
A mathematical model of a continuous moving-bed temperature-swing adsorption (MBTSA) process for post-combustion CO₂ capture in a coal-fired power plant context has been developed. Process simulations have been done using single component isotherms and measured gas diffusion parameters of an activated carbon adsorbent. While a simple process configuration with no gas re-circulation gives quite low capture rate and CO₂ purity, 86% and 65%, respectively, more advanced process configurations where some of the captured gas is recirculated to the incoming flue gas drastically increase both the capture rate and CO₂ purity, the best configuration reaching capture rate of 86% and CO₂ purity of 98%. Further improvements can be achieved by using adsorbents with higher CO₂/N₂ selectivity and/or higher temperature of the regeneration section.
Modeling/Simulation of the Dividing Wall Column by Using the Rigorous Model
Chi Zhai, Qinjun Liu, Jose A. Romagnoli, Wei Sun
April 15, 2019 (v1)
Keywords: gProms, rigorous DWC model, the benzene–toluene–xylene system
Dividing wall column (DWC) is an atypical distillation column with an internal, vertical WE partition wall that effectively accommodates two conventional distillation columns into one to improve the thermodynamic efficiency. In previous studies, different equivalent models by combining conventional columns are adopted to approximate the DWC modeling, which may not well describe the integration of the DWC; moreover, the computational cost increases when multiple columns are implemented to represent one DWC. In this paper, a rigorous mathematical model is proposed based on the mass balance, the energy and phase equilibrium of the DWC, where decision variables and state variables are equally treated. The model was developed in the general process modeling system (gPROMS). Based on the rigorous model, the influences of liquid split ratio and vapor split ratio are discussed, and it is shown that the heat duty is sensitive to changes on the liquid and vapor split ratio. Inappropriate liquid... [more]
[Show All Keywords]