Keywords
Records with Keyword: Carbon Dioxide Sequestration
Meta-study of carbon dioxide capture technologies: Finding the signal in the noise.
Thomas Alan Adams II, Leila Hoseinzade, Pranav Bhaswanth Madabhushi, Ikenna J. Okeke
October 31, 2018 (v2)
Keywords: Carbon Capture, Carbon Dioxide Sequestration, Chemical Looping Combustion, CO2 membrane, IGCC, Oxyfuels, Post-combustion capture, Pre-combustion capture, Solid Oxide Fuel Cells
We conducted a meta-study of CO2 capture processes, examining nearly 100 techno-economic analyses published in the recent open literature. Normally, it is difficult to compare one study to another because each study uses its own set of assumptions, such as plant scale, geography, market parameters, and inconsistent definitions of key metrics such as the cost of CO2 avoided (CCA). In this work, we present normalized versions of these studies using a consistent basis of comparison, such as net power delivered, base year of operation, pipeline CO2 pressure, currency, country of construction, and so on. In so doing, we are able to draw meaningful conclusions and direct comparisons between different classes of CO2 capture technology. The technologies considered include coal and gas-based processes using capture strategies including solvent-based post-combustion carbon capture, gasification-based strategies, membrane-based approaches, oxyfuel combustion, chemical looping combustion, calcium... [more]
Comparison of CO2 Capture Approaches for Fossil-Based Power Generation: Review and Meta-Study
Thomas A. Adams II, Leila Hoseinzade, Pranav Bhaswanth Madabhushi, Ikenna J. Okeke
June 19, 2018 (v2)
Keywords: Carbon Capture, Carbon Dioxide Sequestration, CO2 membrane, IGCC, oxyfuels, Post-combustion capture, Pre-combustion capture, Solid Oxide Fuel Cells
This work is a meta-study of CO2 capture processes for coal and natural gas power generation, including technologies such as post-combustion solvent-based carbon capture, the integrated gasification combined cycle process, oxyfuel combustion, membrane-based carbon capture processes, and solid oxide fuel cells. A literature survey of recent techno-economic studies was conducted, compiling relevant data on costs, efficiencies, and other performance metrics. The data were then converted in a consistent fashion to a common standard (such as a consistent net power output, country of construction, currency, base year of operation, and captured CO2 pressure) such that a meaningful and direct comparison of technologies can be made. The processes were compared against a standard status quo power plant without carbon capture to compute metrics such as cost of CO2 emissions avoided to identify the most promising designs and technologies to use for CO2 emissions abatement.
[Show All Keywords]