Keywords
Records with Keyword: Particle Swarm Optimization
Reactive Power Dispatch Optimization with Voltage Profile Improvement Using an Efficient Hybrid Algorithm †
Zahir Sahli, Abdellatif Hamouda, Abdelghani Bekrar, Damien Trentesaux
September 21, 2018 (v1)
Keywords: hybrid method, loss minimization, optimal reactive power dispatch, Particle Swarm Optimization, tabu search, voltage deviation
This paper presents an efficient approach for solving the optimal reactive power dispatch problem. It is a non-linear constrained optimization problem where two distinct objective functions are considered. The proposed approach is based on the hybridization of the particle swarm optimization method and the tabu-search technique. This hybrid approach is used to find control variable settings (i.e., generation bus voltages, transformer taps and shunt capacitor sizes) which minimize transmission active power losses and load bus voltage deviations. To validate the proposed hybrid method, the IEEE 30-bus system is considered for 12 and 19 control variables. The obtained results are compared with those obtained by particle swarm optimization and a tabu-search without hybridization and with other evolutionary algorithms reported in the literature.
Joint Operation between a PSO-Based Global MPP Tracker and a PV Module Array Configuration Strategy under Shaded or Malfunctioning Conditions
Pi-Yun Chen, Kuei-Hsiang Chao, Bo-Jyun Liao
September 21, 2018 (v1)
Keywords: configuration strategy, maximum power point tracker, Particle Swarm Optimization, photovoltaic module array, shaded or malfunctioning
This paper aims to present a smart, particle swarm optimization (PSO)-based, real time configuration strategy for a photovoltaic (PV) module array in the event of shadow cast on a PV module(s) and/or module failure as an effective approach to power generation efficiency elevation. At the first step, the respective maximum output power levels provided by a normal operating array at various levels of irradiation and module surface temperatures are measured and entered as references into a database. Subsequently, the maximum output power (MPP) level, tracked by a MPP tracker, is feedbacked for a comparison with an aforementioned reference as a way to tell whether there is either a shadow or a malfunction event on a PV module(s). Once an abnormal operation is detected, the presented smart configuration algorithm is performed to reconfigure the PV module array such that the array is operated at the global MPP as intended. Furthermore, by use of a PIC microcontroller that is a family of micr... [more]
[Show All Keywords]