LAPSE


Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Browse
Keywords
Records with Keyword: Nuclear
Aspen Plus Simulation of Biomass-Gas-and-Nuclear-To-Liquids (BGNTL) Processes (Using CuCl Route)
James Alexander Scott, Thomas Alan Adams II
August 7, 2018 (v1)
These are Aspen Plus simulation files for a Biomass-Gas-and-Nuclear-To-Liquids chemical plant (a conceptional design), which uses the Copper-Chloride route for hydrogen production. This is a part of a larger work (see linked LAPSE record for pre-print and associated publication in Canadian J Chem Eng). Process sections and major units in this simulation include: Gasification, Integrated-Gasification-Methane-Reforming, Pre-Reforming, Water Gas Shift, Autothermal Reforming, Syngas Blending and Upgrading, Solid Oxide Fuel Cell power islands, Fischer-Tropsch Synthesis, Methanol Synthesis, Dimethyl Ether Synthesis, Heat Recovery and Steam Generation, CO2 Compression for Sequestration, Cooling Towers, and various auxiliary units for heat and pressure management. See the linked work for a detailed description of the model.
Biomass-Gas-and-Nuclear-To-Liquids (BGNTL) Processes Part I: Model Development and Simulation
James Alexander Scott, Thomas Alan Adams II
August 7, 2018 (v1)
New polygeneration processes for the co-production of liquid fuels (Fischer-Tropsch liquids, methanol, and dimethyl ether) and electricity are presented. The processes use a combination of biomass, natural gas, and nuclear energy as primary energy feeds. Chemical process models were created and used to simulate candidate versions of the process, using combinations of models ranging from complex multi- scale models to standard process flowsheet models. The simulation results are presented for an Ontario, Canada case study to obtain key metrics such as efficiency and product conversions. Sample Aspen Plus files are provided in the supplementary material to be used by others.
Biomass-Gas-and-Nuclear-To-Liquids Aspen Plus Simulations
Leila Hoseinzade, Thomas A. Adams II
December 7, 2018 (v2)
In this paper, several new processes are proposed which co-generate electricity and liquid fuels (such as diesel, gasoline, or dimethyl ether) from biomass, natural gas and heat from a high temperature gas-cooled reactor. This carbonless heat provides the required energy to drive an endothermic steam methane reforming process, which yields H2-rich syngas (H2/CO>6) with lower greenhouse gas emissions than traditional steam methane reforming processes. Since downstream Fischer-Tropsch, methanol, or dimethyl ether synthesis processes require an H2/CO ratio of around 2, biomass gasification is integrated into the process. Biomass-derived syngas is sufficiently H2-lean such that blending it with the steam methane reforming derived syngas yields a syngas of the appropriate H2/CO ratio of around 2. In a prior work, we also demonstrated that integrating carbonless heat with combined steam and CO2 reforming of methane is a promising option to produce a syngas with proper H2/CO ratio for Fischer... [more]
[Show All Keywords]