Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Browse
Keywords
Records with Keyword: Distillation
A Hybrid Inverse Problem Approach to Model-Based Fault Diagnosis of a Distillation Column
Suli Sun, Zhe Cui, Xiang Zhang, Wende Tian
February 12, 2020 (v1)
Keywords: Distillation, fault diagnosis, inverse problem, parameter estimation
Early-stage fault detection and diagnosis of distillation has been considered an essential technique in the chemical industry. In this paper, fault diagnosis of a distillation column is formulated as an inverse problem. The nonlinear least squares algorithm is used to evaluate fault parameters embedded in a nonlinear dynamic model of distillation once abnormal symptoms are detected. A partial least squares regression model is built based on fault parameter history to explicitly predict the development of fault parameters. With the stripper of Tennessee Eastman process as example, this novel approach is tested for step- and random-type faults and several factors affecting its efficiency are discussed. The application result shows that the hybrid inverse problem approach gives the correct change of fault parameter at a speed far faster than the base approach with only a nonlinear model.
A Hybrid Framework for Simultaneous Process and Solvent Optimization of Continuous Anti-Solvent Crystallization with Distillation for Solvent Recycling
Jiayuan Wang, Lingyu Zhu, Richard Lakerveld
February 3, 2020 (v1)
Keywords: crystallization, Distillation, PC-SAFT, process design, solvent design
Anti-solvent crystallization is frequently applied in pharmaceutical processes for the separation and purification of intermediate compounds and active ingredients. The selection of optimal solvent types is important to improve the economic performance and sustainability of the process, but is challenged by the discrete nature and large number of possible solvent combinations and the inherent relations between solvent selection and optimal process design. A computational framework is presented for the simultaneous solvent selection and optimization for a continuous process involving crystallization and distillation for recycling of the anti-solvent. The method is based on the perturbed-chain statistical associated fluid theory (PC-SAFT) equation of state to predict relevant thermodynamic properties of mixtures within the process. Alternative process configurations were represented by a superstructure. Due to the high nonlinearity of the thermodynamic models and rigorous models for dist... [more]
Optimal Design of a Distillation System for the Flexible Polygeneration of Dimethyl Ether and Methanol Under Uncertainty
Thomas A Adams II, Tokiso Thatho, Matthew C Le Feuvre, Christopher LE Swartz
October 22, 2019 (v2)
Keywords: Dimethyl Ether, Distillation, Flexible polygeneration, Methanol, Optimization, Polygeneration, Process Design Under Uncertainty
This presentation concerns the promising new area of flexible polygeneration, a chemical process design concept in which a chemical plant is able to change its product outputs throughout its lifetime in response to changing market conditions, business objectives, or other external factors. In this talk we present a new flexible polygeneration process system that can switch between dimethyl ether (DME) or methanol production, depending on need. Classic flexible polygeneration systems typically utilize separate process trains for each product, in which whole process trains are turned on or off (or up or down) depending on the current product. However, our proposed process combines the two process trains into one, in which most of the process equipment is always used during either mode of production, but with different operating conditions. In this work, we show how this significantly reduces capital expenditure, reduces the plant footprint, and ultimately is more economical than a tradit... [more]
Improvement of 1,3-Butadiene Separation in 2,3-Butanediol Dehydration Using Extractive Distillation
Daesung Song, Young-Gak Yoon, Seung-Kwon Seo, Chul-Jin Lee
September 5, 2019 (v1)
Keywords: 1-butene, 1,3-butadiene, 2,3-butanediol dehydration, Distillation, economic feasibility, extractive distillation
This study was performed to investigate the extractive distillation for 1,3-butadiene (1,3-BD) purification as a part of the 2,3-butanediol (2,3-BDO) dehydration process. The separation of 1,3-BD from 1-butene produced as a 2,3-BDO dehydration by-product while using distillation is complicated due to the similar volatilities of the two compounds. Thus, an extractive distillation system is proposed for the effective recovery of 1,3-BD, and is compared with a conventional distillation system in terms of its performance and economic feasibility. A higher 1,3-BD recovery rate was achieved while using the proposed system and the relative profitabilities of both separation systems were analyzed according to the market price of 1,3-BD, which is a decisive variable for economic feasibility.
The Optimal Design of a Distillation System for the Flexible Polygeneration of Dimethyl Ether and Methanol Under Uncertainty
Thomas A. Adams II, Tokiso Thatho, Matthew C. Le Feuvre, Christopher L.E. Swartz
June 12, 2018 (v1)
Two process designs for the separation section of a flexible dimethyl ether and methanol polygeneration plant are presented, as well as an optimization method which can determine the optimal design under market uncertainty quickly and to global optimality without loss of model fidelity. The polygeneration plant produces a product mixture that is either mostly dimethyl ether or mostly methanol depending on market conditions by using a classic two-stage dimethyl ether production catalytic reaction route in which the second stage is bypassed when the market demand is such that methanol production is more favorable than dimethyl ether. The downstream distillation sequence is designed to purify the products to desired specifications despite the wide variability in feed condition that corresponds to the upstream reaction system operating either in DME-rich or methanol-rich mode. Because the optimal design depends on uncertain market conditions (realized as the percentage of the time in which... [more]
[Show All Keywords]