# LAPSE

Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Keywords
###### Records with Keyword: Matlab
Hybrid Photovoltaic Systems with Accumulation—Support for Electric Vehicle Charging
Petr Mastny, Jan Moravek, Martin Vojtek, Jiri Drapela
December 10, 2019 (v1)
Keywords: accumulation, electric vehicle, fast charging stations, hybrid energy system, Matlab
The paper presents the concept of a hybrid power system with additional energy storage to support electric vehicles (EVs) charging stations. The aim is to verify the possibilities of mutual cooperation of individual elements of the system from the point of view of energy balances and to show possibilities of utilization of accumulation for these purposes using mathematical modeling. The description of the technical solution of the concept is described by a mathematical model in the Matlab Simulink programming environment. Individual elements of the assembled model are described in detail, together with the algorithm of the control logic of charging the supporting storage system. The resulting model was validated via an actual small-scale hybrid system (HS). Within the outputs of the mathematical model, two simulation scenarios are presented, with the aid of which the benefits of the concept presented were verified.
Simulation of Ion Exchange Resin with Finite Difference Methods
Yawen Zhu, Bobo Liu, Ruichao Peng, Yunbai Luo, Ping Yu
December 9, 2019 (v1)
Keywords: finite difference method, ion exchange, Matlab, Simulation
Ion exchange resin is used to remove potentially corrosive impurities from coolant in the first circuit of a nuclear power plant. After one operational cycle, the used and unused resin in the mixed bed is discarded as solid waste. The aim of this work is to create a mathematical model to predict the operational cycle time of the mixed bed resin for reducing unused resin discharge. A partial differential equation (PDE) was set up with the conservation of matter. A finite difference method was used to solve the PDE. Matlab was the programming and calculating tool used in this work. The data from solution were obtained at different time and space nodes. The model was then verified experimentally using different ions on exchange columns. Concentrations of K+, Mn2+, and Cl- were calculated to verify the validation of the model by comparing it with experimental data. The calculated values showed good consistency with the experimental value.
Illustrating Molecular-Level Phenomena and Molecular Simulation Techniques with Commonly Used Software
Rachel Getman
August 24, 2019 (v1)
Subject: Education
Keywords: Chemical Reaction Engineering, Intermolecular Forces, Matlab, Microsoft Excel, Molecular simulations, Molecular-level phenomena, Monte Carlo, Python, Quantum Simulations, WebMO
While topics in the chemical engineering curriculum generally involve the macroscale, e.g., focusing on process design and optimizations, many of the grand challenges facing chemical engineers today involve molecular level chemistry. Having an appreciation for molecular-level phenomena will better prepare chemical engineers to handle problems in energy, water, food, catalysis, advanced materials, and other fields. In this presentation, we discuss homework/project problems that we have developed for use in the Material and Energy Balances, Separations, Kinetics, and Thermodynamics courses that explore molecular level phenomena and molecular-level simulation approaches. Specifically, these problems focus on intermolecular interactions, connections between molecular configurations and macroscopic observables, how molecular level properties control material performance, and simulation strategies that enable exploration of the molecular level. An aim of the assignments is to demonstrate sim... [more]
Approximating Nonlinear Relationships for Optimal Operation of Natural Gas Transport Networks
Kody Kazda, Xiang Li
October 13, 2018 (v1)
Subject: Optimization
Keywords: Compressors, Fuel Cost Minimization Problem, GAMS, Matlab, Natural Gas, Optimization
Source code for the case study presented in the paper "Approximating Nonlinear Relationships for Optimal Operation of Natural Gas Transport Networks". The case study involves solving the compressor fuel cost minimization problem (FCMP) on three simple natural gas networks. For each gas network three different formulations of the FCMP are tested: a common simplified FCMP model (FCMP_S), the novel approximation FCMP model (FCMP_N) that is developed in the paper, and a partially rigorous FCMP model (FCMP_PR) that models components of the model using their most rigorous calculations where feasible. The FCMP for each of these tests was optimized using GAMS, for which the code is provided. The accuracy of each of the three models was then assessed by comparing them to a rigorous simulation. The rigorous simulation was coded in Matlab and is provided, where separate files are used to calculate the rigorous gas pressure drop along a pipeline, and the energy input required for gas compression... [more]
[Show All Keywords]