Proceedings of ESCAPE 35ISSN: 2818-4734
Volume: 4 (2025)
Table of Contents
LAPSE:2025.0378
Published Article
LAPSE:2025.0378
Comparative and Statistical Study on Aspen Plus Interfaces Used for Stochastic Optimization
Josué J. Herrera Velázquez, Erik L. Piñón Hernández, Luis A. Vega, Dana E. Carrillo Espinoza, J. Rafael Alcántara Avila, Julián Cabrera Ruiz
June 27, 2025
Abstract
New research on complex intensified distillation schemes has popularized the use of several commercial process simulation software. The interfaces between process simulation and optimization-oriented software have allowed the use of rigorous and robust models. This type of optimization is mentioned in the literature as "Black Box Optimization", since successive evaluations exploits the information from the simulator without altering the model that represents the given process. Among process simulation software, Aspen Plus® has become popular due to their rigorous calculations, model customization, and results reliability. This work proposes a comparative study for Aspen Plus software and Microsoft Excel VBA®, Python® and MATLAB® interfaces. Five distillation schemes were analyzed: conventional column, reactive column, extractive column, column with side rectifier and a Petlyuk column. The optimization of the ?????? (Total Annual Cost) was carried out by a modified Simulated Annealing Algorithm (m-SAA). The evaluation criteria are the time per iteration (????) and ?????? values. The results indicate that the best option to carry out the optimization was by using the VBA interface, however the one carried out with Python did not differ radically (12%).
Keywords
Aspen Plus, Matlab, Process Optimization, Python, Stochastic Optimization, Visual Basic
Suggested Citation
Velázquez JJH, Hernández ELP, Vega LA, Espinoza DEC, Avila JRA, Ruiz JC. Comparative and Statistical Study on Aspen Plus Interfaces Used for Stochastic Optimization. Systems and Control Transactions 4:1409-1414 (2025) https://doi.org/10.69997/sct.102858
Author Affiliations
Velázquez JJH: Universidad de Guanajuato, Departamento de Ingeniería Química, Guanajuato, 36050, Mexico; Instituto Tecnológico Superior de Guanajuato, Departamento de Ingeniería en Industrias Alimentarias, Guanajuato, 36262, Mexico
Hernández ELP: Universidad de Guanajuato, Departamento de Ingeniería Química, Guanajuato, 36050, Mexico
Vega LA: Universidad de Guanajuato, Departamento de Ingeniería Química, Guanajuato, 36050, Mexico
Espinoza DEC: Universidad de Guanajuato, Departamento de Ingeniería Química, Guanajuato, 36050, Mexico
Avila JRA: Pontificia Universidad Católica del Perú, Departamento de Ingeniería, Lima, 15074, Peru
Ruiz JC: Universidad de Guanajuato, Departamento de Ingeniería Química, Guanajuato, 36050, Mexico
Journal Name
Systems and Control Transactions
Volume
4
First Page
1409
Last Page
1414
Year
2025
Publication Date
2025-07-01
Version Comments
Original Submission
Other Meta
PII: 1409-1414-1358-SCT-4-2025, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2025.0378
This Record
External Link

https://doi.org/10.69997/sct.102858
Article DOI
Download
Files
Jun 27, 2025
Main Article
License
CC BY-SA 4.0
Meta
Record Statistics
Record Views
626
Version History
[v1] (Original Submission)
Jun 27, 2025
 
Verified by curator on
Jun 27, 2025
This Version Number
v1
Citations
Most Recent
This Version
URL Here
http://psecommunity.org/LAPSE:2025.0378
 
Record Owner
PSE Press
Links to Related Works
Directly Related to This Work
Article DOI
References Cited
  1. Javaloyes Antón J, Kronqvist J, Caballero JA. Simulation-based optimization of distillation processes using an extended cutting plane algorithm. Comp Chem Eng 159:107655 (2022) https://doi.org/10.1016/j.compchemeng.2021.107655
  2. Cabrera Ruiz J, Hasebe S, Alcántara Avila JR. Improvement of the Optimal Design Procedure Using Randomized Algorithm and Process Simulators. MATEC Web Conf 333:06004 (2021) https://doi.org/10.1051/matecconf/202133306004
  3. Penteado AT, Esche E, Weigert J, Repke JU. A framework for stochastic and surrogate-assisted optimization using sequential modular process simulators. Comp Aid Chem Eng 48:1903-1908 (2020) https://doi.org/10.1016/B978-0-12-823377-1.50318-9
  4. Sharma S, Rangaiah GP, Cheah KS. Multi-objective optimization using MS Excel with an application to design of a falling-film evaporator system. Food Bioprod Process 90:123-134 (2012) https://doi.org/10.1016/j.fbp.2011.02.005
  5. Sánchez Ramírez E, Huerta Rosas B, Quiroz Ramírez JJ, Suárez Toriello VA, Contreras Zarazua G, Segovia Hernández JG. Optimization-based framework for modeling and kinetic parameter estimation. Chem Eng Res Des 184:647-660 (2022) https://doi.org/10.1016/j.cherd.2022.08.040
  6. Zheng Y, Wang Z, Pan H, Ling H. Initial design and multi-objeective optimization of four-product dividing wall column. Sep Purif Technol 309:122961 (2023) https://doi.org/10.1016/j.seppur.2022.122961
  7. Sánchez Gómez JA, Cabrera Ruiz J, Hernández S. Design and optimization of an intensified process to produce acrylic acid as added product value from glycerol generated in the biodiesel production. Chem Eng Res Des 184:543-553 (2022) https://doi.org/10.1016/j.cherd.2022.08.040
  8. Blank J, Deb K. Pymoo: Multi-objective optimization in Python. IEEE Access 8:89497-89509 (2020) https://doi.org/10.1109/ACCESS.2020.2990567
  9. Santos Bartolome P, Van-Gerven. A comparative study on Aspen Hysys interconnection methodologies. Comp Chem Eng 162:107785 (2022) https://doi.org/10.1016/j.compchemeng.2022.107785
  10. Ponce Rocha JD, Ramírez Márquez C, Morales Rodríguez R. Performance analysis of virtual platforms focused on multi-objective process optimization. Comp Aid Chem Eng 52:843-848 https://doi.org/10.1016/B978-0-443-15274-0.50135-9
  11. Muñoz López CA, Telen D, Nimmegeers P, Cabianca L, Logist F, Van-Impe J. A process simulator interface for multiobjective optimization of chemical processes. Comp Chem Eng 109:119-137 (2017) https://doi.org/10.1016/j.compchemeng.2017.09.014
  12. Herrera Velázquez JJ, Zavala Durán FM, Chávez Díaz LA, Cabrera Ruiz J, Alcántara Avila JR. Hybrid two-step optimization of internally heat-integrated distillation columns. J Taiwan Inst Chem Eng 130:103967 (2022) https://doi.org/10.1016/j.jtice.2021.06.061
  13. Huang K, Nakaiwa M, Wang SJ, Tsutsumi A. Reactive distillation design with considerations of heats of reaction. AIChE J 52:2518-2534 (2006) https://doi.org/10.1002/aic.10885
  14. Sazonova AY, Raeva VM, Frolkova AK. Design of extractive distillation process with mixed entrainer. Chem Papers 70:594-601 (2015) https://doi.org/10.1515/chempap-2015-0247
  15. Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D. Appendix A: Cost equations and curves for the CAPCOST program. In: Analysis, synthesis, and design of chemical processes. Ed: 4th. Prentice Hall (2012)
  16. Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11(1), 1-21. https://doi.org/10.1080/00401706.1969.10490657