Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Browse
Keywords
Records with Keyword: Methanol
Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits
Goreti Botelho, Ofélia Anjos, Letícia M. Estevinho, Ilda Caldeira
July 19, 2021 (v1)
Keywords: human health, legal limits, manufacturing processes, Methanol, quality control, spirits, volatile composition
Spirits are alcoholic beverages commonly consumed in European countries. Their raw materials are diverse and include fruits, cereals, honey, sugar cane, or grape pomace. The main aim of this work is to present and discuss the source, quality control, and legal limits of methanol in spirits produced using fruit and honey spirits. The impact of the raw material, alcoholic fermentation, and the distillation process and aging process on the characteristics and quality of the final distilled beverage are discussed. In addition, a critical view of the legal aspects related to the volatile composition of these distillates, the origin and presence of methanol, and the techniques used for quantification are also described. The methanol levels found in the different types of spirits are those expected based on the specific raw materials of each and, almost in all studies, respect the legal limits.
Heat Transfer Improvement in MHD Natural Convection Flow of Graphite Oxide/Carbon Nanotubes-Methanol Based Casson Nanofluids Past a Horizontal Circular Cylinder
Abdulkareem Saleh Hamarsheh, Firas A. Alwawi, Hamzeh T. Alkasasbeh, Ahmed M. Rashad, Ruwaidiah Idris
May 26, 2021 (v1)
Keywords: Casson nanofluid, CNTs, constant heat flux, GO, horizontal circular cylinder, Methanol, MHD
This numerical investigation intends to present the impact of nanoparticles volume fraction, Casson, and magnetic force on natural convection in the boundary layer region of a horizontal cylinder in a Casson nanofluid under constant heat flux boundary conditions. Methanol is considered as a host Casson fluid. Graphite oxide (GO), single and multiple walls carbon nanotubes (SWCNTs and MWCNTs) nanoparticles have been incorporated to support the heat transfer performances of the host fluid. The Keller box technique is employed to solve the transformed governing equations. Our numerical findings were in an excellent agreement with the preceding literature. Graphical results of the effect of the relevant parameters on some physical quantities related to examine the behavior of Casson nanofluid flow were obtained, and they confirmed that an augmentation in Casson parameter results in a decline in local skin friction, velocity, or temperature, as well as leading to an increment in local Nusse... [more]
Aspen Plus Simulation of a Rectisol Process for Blue Hydrogen Production
Thomas A Adams II
March 12, 2021 (v2)
This is an Aspen Plus v12 model for a Rectisol process used for removing CO2 from a shifted syngas stream arising from steam methane reforming for the purposes of Blue hydrogen production. It is intended for educational use, and is useful as a starting point for those interested in simulating this process. It is not optimized in any way, but it contains a working flowsheet for those interested in modifying it for your own purposes.

The simulation was developed using the simulation strategy given in Adams TA II, Khojestah Salkuyeh Y, Nease J. Processes and Simulations for Solvent-based CO2Capture and Syngas Cleanup. Chapter in: Reactor and process design for in sustainable energy technology. Elsevier (2014). Pages 163-232. ISBN: 978-0-444-59566-9. It is based on the process discussed in Doctor RD, Molburg JC, Thimmapuram PR, Berry GF, Livengood CD. Gasification combined cycle: carbon dioxide recovery, transport, and disposal. US DOE Report, Argonne National Laboratory ANL/ESD-24. 19... [more]
Optimal Design of a Distillation System for the Flexible Polygeneration of Dimethyl Ether and Methanol Under Uncertainty
Thomas A Adams II, Tokiso Thatho, Matthew C Le Feuvre, Christopher LE Swartz
October 22, 2019 (v2)
Keywords: Dimethyl Ether, Distillation, Flexible polygeneration, Methanol, Optimization, Polygeneration, Process Design Under Uncertainty
This presentation concerns the promising new area of flexible polygeneration, a chemical process design concept in which a chemical plant is able to change its product outputs throughout its lifetime in response to changing market conditions, business objectives, or other external factors. In this talk we present a new flexible polygeneration process system that can switch between dimethyl ether (DME) or methanol production, depending on need. Classic flexible polygeneration systems typically utilize separate process trains for each product, in which whole process trains are turned on or off (or up or down) depending on the current product. However, our proposed process combines the two process trains into one, in which most of the process equipment is always used during either mode of production, but with different operating conditions. In this work, we show how this significantly reduces capital expenditure, reduces the plant footprint, and ultimately is more economical than a tradit... [more]
Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers
Janvier Sylvestre N’cho, Issouf Fofana, Yazid Hadjadj, Abderrahmane Beroual
November 27, 2018 (v1)
Subject: Other
Keywords: acidity, color/visual examination, DGA, diagnostics, dissolved decay products, DP, free radicals, FTIR spectroscopy, furan, gas chromatography-mass spectrometry coupling, HPLC, inhibitor content, insulating oil/paper, interfacial tension, Methanol, moisture, particle count, power transformers, turbidity, UV/visible spectroscopy, viscosity
A power transformer outage has a dramatic financial consequence not only for electric power systems utilities but also for interconnected customers. The service reliability of this important asset largely depends upon the condition of the oil-paper insulation. Therefore, by keeping the qualities of oil-paper insulation system in pristine condition, the maintenance planners can reduce the decline rate of internal faults. Accurate diagnostic methods for analyzing the condition of transformers are therefore essential. Currently, there are various electrical and physicochemical diagnostic techniques available for insulation condition monitoring of power transformers. This paper is aimed at the description, analysis and interpretation of modern physicochemical diagnostics techniques for assessing insulation condition in aged transformers. Since fields and laboratory experiences have shown that transformer oil contains about 70% of diagnostic information, the physicochemical analyses of oil... [more]
Fumed Silica Nanoparticles Incorporated in Quaternized Poly(Vinyl Alcohol) Nanocomposite Membrane for Enhanced Power Densities in Direct Alcohol Alkaline Fuel Cells
Selvaraj Rajesh Kumar, Cheng-Hsin Juan, Guan-Ming Liao, Jia-Shiun Lin, Chun-Chen Yang, Wei-Ting Ma, Jiann-Hua You, Shingjiang Jessie Lue
October 23, 2018 (v1)
Subject: Materials
Keywords: cell performance, Ethanol, fumed silica, ionic conductivity, Methanol, quaternized poly(vinyl alcohol)
A nanocomposite polymer membrane based on quaternized poly(vinyl alcohol)/fumed silica (QPVA/FS) was prepared via a quaternization process and solution casting method. The physico-chemical properties of the QPVA/FS membrane were investigated. Its high ionic conductivity was found to depend greatly on the concentration of fumed silica in the QPVA matrix. A maximum conductivity of 3.50 × 10−2 S/cm was obtained for QPVA/5%FS at 60 °C when it was doped with 6 M KOH. The permeabilities of methanol and ethanol were reduced with increasing fumed silica content. Cell voltage and peak power density were analyzed as functions of fumed silica concentration, temperature, methanol and ethanol concentrations. A maximum power density of 96.8 mW/cm² was achieved with QPVA/5%FS electrolyte using 2 M methanol + 6 M KOH as fuel at 80 °C. A peak power density of 79 mW/cm² was obtained using the QPVA/5%FS electrolyte with 3 M ethanol + 5 M KOH as fuel. The resulting peak power densities are higher than the... [more]
Aspen Plus Simulation of Biomass-Gas-and-Nuclear-To-Liquids (BGNTL) Processes (Using CuCl Route)
James Alexander Scott, Thomas Alan Adams II
August 7, 2018 (v1)
These are Aspen Plus simulation files for a Biomass-Gas-and-Nuclear-To-Liquids chemical plant (a conceptional design), which uses the Copper-Chloride route for hydrogen production. This is a part of a larger work (see linked LAPSE record for pre-print and associated publication in Canadian J Chem Eng). Process sections and major units in this simulation include: Gasification, Integrated-Gasification-Methane-Reforming, Pre-Reforming, Water Gas Shift, Autothermal Reforming, Syngas Blending and Upgrading, Solid Oxide Fuel Cell power islands, Fischer-Tropsch Synthesis, Methanol Synthesis, Dimethyl Ether Synthesis, Heat Recovery and Steam Generation, CO2 Compression for Sequestration, Cooling Towers, and various auxiliary units for heat and pressure management. See the linked work for a detailed description of the model.
The Optimal Design of a Distillation System for the Flexible Polygeneration of Dimethyl Ether and Methanol Under Uncertainty
Thomas A. Adams II, Tokiso Thatho, Matthew C. Le Feuvre, Christopher L.E. Swartz
June 12, 2018 (v1)
Two process designs for the separation section of a flexible dimethyl ether and methanol polygeneration plant are presented, as well as an optimization method which can determine the optimal design under market uncertainty quickly and to global optimality without loss of model fidelity. The polygeneration plant produces a product mixture that is either mostly dimethyl ether or mostly methanol depending on market conditions by using a classic two-stage dimethyl ether production catalytic reaction route in which the second stage is bypassed when the market demand is such that methanol production is more favorable than dimethyl ether. The downstream distillation sequence is designed to purify the products to desired specifications despite the wide variability in feed condition that corresponds to the upstream reaction system operating either in DME-rich or methanol-rich mode. Because the optimal design depends on uncertain market conditions (realized as the percentage of the time in which... [more]
[Show All Keywords]