Browse
Subjects
Records with Subject: Interdisciplinary
Showing records 1 to 25 of 102. [First] Page: 1 2 3 4 5 Last
Special Issue “Methane Reforming Processes”
Andrea Di Giuliano, Katia Gallucci
August 3, 2023 (v1)
This Special Issue, entitled “Methane Reforming Processes”, of the MDPI journal Processes, embraces wide-ranging aspects of interest in the exploitation of methane reforming reactions and related chemical species, from a point of view that aligns with the scope of this open access journal [...]
A Review on the Full Chain Application of 3D Printing Technology in Precision Medicine
Shenglin Wu, Jinbin Zeng, Haoxin Li, Chongyang Han, Weibin Wu, Wenyi Zeng, Luxin Tang
July 13, 2023 (v1)
Keywords: 3D printing technology, full chain, personalization, precision manufacturing, precision medicine, rapid manufacturing
Personalized precision medicine is a new direction for medical development, and advanced manufacturing technology can provide effective support for the development of personalized precision medicine. Based on the layered accumulation manufacturing principle, 3D printing technology has unique advantages in personalized rapid manufacturing, and can form complex geometric shape parts at low cost and high efficiency. This article introduces the application progress of 3D printing technology in medical models, surgical navigation templates, invisible aligners, and human implants, analyzes their advantages and limitations, and provides an outlook for the development trend of 3D printing technology in precision medicine.
Energy Geotechnics and Geostructures
Peng Pei, Faqiang Su
April 28, 2023 (v1)
Continuous global economic and population growth has driven the ever-increasing demand for energy [...]
An In Vivo Proposal of Cell Computing Inspired by Membrane Computing
Alberto Arteta Albert, Ernesto Díaz-Flores, Luis Fernando de Mingo López, Nuria Gómez Blas
March 28, 2023 (v1)
Keywords: bioinformatics, membrane computing, unconventional computing
Intractable problems are challenging and not uncommon in Computer Science. The computing generation we are living in forces us to look for an alternative way of computing, as current computers are facing limitations when dealing with complex problems and bigger input data. Physics and Biology offer great alternatives to solve these problems that traditional computers cannot. Models like Quantum Computing and cell computing are emerging as possible solutions to the current problems the conventional computers are facing. This proposal describes an in vivo framework inspired by membrane computing and based on alternative computational frameworks that have been proven to be theoretically correct such as chemical reaction series. The abilities of a cell as a computational unit make this proposal a starting point in the creation of feasible potential frameworks to enhance the performance of applications in different disciplines such as Biology, BioMedicine, Computer networks, and Social Scie... [more]
Impact of Geomagnetic Fields on the Geochemical Evolution of Oil
Andrey A. Ponomarev, Marat R. Gafurov, Marsel A. Kadyrov, Oscar A. Tugushev, Denis A. Drugov, Yuri V. Vaganov, Mikhail D. Zavatsky
February 21, 2023 (v1)
Keywords: carbon isotopic composition, geochemical correlation, geochemical evolution of oil, geomagnetic fields
Here, we reported on experimental studies related to the exposure of oil to a 50 Hz electromagnetic field (0.81 T strength) and examined the changes in the geochemical characteristics of oil: n-alkane distribution, isotopic composition (δ13C), and concentration of paramagnetic centers. We discovered that electromagnetic fields have impacts on the distribution of n-alkanes and on their individual isotopic composition, with the concentration of paramagnetic centers remaining unchanged. While discussing the results, we looked into the state-of-the-art of research on electromagnetic exposures of the bottom-hole formation zone and into natural electric and geomagnetic fields. We consequently hypothesized that natural geomagnetic fields can influence the geochemical evolution processes of oil. This hypothesis requires further studies to reveal the frequency and strength characteristics of natural geomagnetic fields.
Optimal Decisions on Harmful Chemical Limits in Consumer Goods within an Acceptable Risk Level
Yuexiang Yang, Zhen Sun, Xiao Liu, Wenpeng Jia, Jun Wu
February 21, 2023 (v1)
Keywords: acceptable risk level, ALARP, decisions on limits, harmful chemicals, industrial tolerance level
Standard limits for harmful chemicals in consumer goods are important for consumer safety and the development of relevant industries. This paper proposes a method for determining content limits of chemicals in consumer goods by extending the “as low as reasonably practicable” (ALARP) principle by adding the impact of price and cost changes. While giving due consideration to the price and cost factors of consumer goods, this method derives such limits by measuring “acceptable consumer risk level” on the demand side and “industrial tolerance to chemical limits” on the supply side to obtain the ALARP area. Through a combination of functional relations between different factors and chemical limits, including consumer welfare, producer welfare, and external cost, a general chemical limit decision model can be created for the determination of the general limits of chemicals. This research provides a new methodology for studying decisions on chemical limits by considering consumer and industr... [more]
Moving toward the low-carbon hydrogen economy: Experiences and key learnings from national case studies
Gunhild Reigstad, Simon Roussanaly, Julian Straus, Rahul Anantharaman, Robert de Kler, Maxine Akhurst, Jonathan Pearce, Nixon Sunny, Ward Goldthorpe, Lionel Avignon, Stefan Flamme, Gianfranco Guidati, Evangelos Panos, Christian Bauer
July 7, 2022 (v1)
Keywords: CCS, Energy transition, Integrated analysis, Low carbon hydrogen, Low-carbon economy
The recognised urgency to achieve net-zero carbon dioxide (CO2) emissions by 2050, as first presented by the IPCC special report on 1.5 °C Global Warming, has spurred a renewed interest in hydrogen as a companion to electricity for widespread decarbonization of the economy. We present reflections on the estimation of future hydrogen demand, optimization of infrastructure for production, transport and storage, development of viable business cases, and environmental impact evaluations using life cycle assessments. We highlight challenges and opportunities that are common across studies of the business cases for hydrogen in Germany, the UK, the Netherlands, Switzerland and Norway. The use of hydrogen in the industry sector is an important driver and could incentivise large-scale hydrogen value chains. In the long-term hydrogen becomes important also for the transport sector. Hydrogen production from natural gas with capture and permanent storage of the produced CO2 (CCS) enables large-sc... [more]
Lithium-Ion Batteries as Ignition Sources in Waste Treatment Processes—A Semi-Quantitate Risk Analysis and Assessment of Battery-Caused Waste Fires
Thomas Nigl, Mirjam Baldauf, Michael Hohenberger, Roland Pomberger
September 22, 2021 (v1)
Keywords: fire hazards, lithium batteries, portable batteries, risk modelling, waste management
Increasing occurrences of waste fires that are caused by improperly discarded lithium-based portable batteries threaten the whole waste management sector in numerous countries. Studies showed that high quantities of these batteries have been found in several municipal solid waste streams in recent years in Austria. This article reveals the main influence factors on the risk of lithium-based batteries in their end-of-life and it focuses on the quantification of damages to portable batteries during waste treatment processes. Hazards are identified and analysed and potential risks in waste management systems are comprehensively assessed. In two scenarios, the results showed that the potential risks are too high to maintain a sustainable form of waste management. According to the assessment, a small fire in a collection vehicle is located in the risk graph’s yellow region (as low as reasonably practicable, ALARP), while a fully developed fire in a treatment plant has to be classified as an... [more]
Adsorption as a Process for Produced Water Treatment: A Review
Roghayeh Yousef, Hazim Qiblawey, Muftah H. El-Naas
July 29, 2021 (v1)
Keywords: Adsorption, oil water, produced water, separation, water treatment
Produced water (PW) is a by-product of oil and gas operations, and its production is foreseen to increase in the upcoming years. Such an increase is justified by various entities through their projection of the expected increase in the demand of oil and gas. The treatment of produced water is a significantly growing challenge for the oil and gas industry that requires serious attention. The first part of this review will present the underlying issue of produced water and relevant practices. With adsorption being defined as the least expensive treatment method, the second part will introduce general adsorption principals. The third part will describe the recent applications of adsorption for the treatment of PW with more focus of categorizing the adsorbents as natural and non-natural adsorbents. The main aim of this review is to shed light on the recent research related to PW treatment using adsorption. This is performed to highlight the shortcomings in PW adsorption research and recomm... [more]
Special Issue on “Hydrogen Production Technologies”
Suttichai Assabumrungrat, Suwimol Wongsakulphasatch, Pattaraporn Lohsoontorn Kim, Alírio E. Rodrigues
April 29, 2021 (v1)
According to energy crisis and environmental concerns, hydrogen has been driven to become one of the most promising alternative energy carriers for power generation and high valued chemical products [...]
A Review of Stereolithography: Processes and Systems
Jigang Huang, Qin Qin, Jie Wang
March 24, 2021 (v1)
Keywords: additive manufacturing, continuous, projection, scanning, stereolithography
Being the earliest form of additive manufacturing, stereolithography (SLA) fabricates 3D objects by selectively solidifying the liquid resin through a photopolymerization reaction. The ability to fabricate objects with high accuracy as well as a wide variety of materials brings much attention to stereolithography. Since its invention in the 1980s, SLA underwent four generations of major technological innovation over the past 40 years. These innovations have thus resulted in a diversified range of stereolithography systems with dramatically improved resolution, throughput, and materials selection for creating complex 3D objects and devices. In this paper, we review the four generations of stereolithography processes, which are scanning, projection, continuous and volumetric stereolithography. For each generation, representative stereolithography system configurations are also discussed in detail. In addition, other derivative technologies, such as scanning−projection, multi-material, an... [more]
Special Issue on “Design and Control of Sustainable Processes”
Sujit S. Jogwar, Xiaonan Wang
February 22, 2021 (v1)
Sustainability has been one of the key drivers for technological innovation in this century [...]
Supercritical Antisolvent Process for Pharmaceutical Applications: A Review
Paola Franco, Iolanda De Marco
December 17, 2020 (v1)
Keywords: biomedical field, coprecipitation, drug delivery, micronization, supercritical antisolvent
The supercritical antisolvent (SAS) technique has been widely employed in the biomedical field, including drug delivery, to obtain drug particles or polymer-based systems of nanometric or micrometric size. The primary purpose of producing SAS particles is to improve the treatment of different pathologies and to better the patient’s compliance. In this context, many active compounds have been micronized to enhance their dissolution rate and bioavailability. Aiming for more effective treatments with reduced side effects caused by drug overdose, the SAS polymer/active principle coprecipitation has mainly been proposed to offer an adequate drug release for specific therapy. The demand for new formulations with reduced side effects on the patient’s health is still growing; in this context, the SAS technique is a promising tool to solve existing issues in the biomedical field. This updated review on the use of the SAS process for clinical applications provides useful information about the ac... [more]
Seawater Desalination: A Review of Forward Osmosis Technique, Its Challenges, and Future Prospects
Aondohemba Aende, Jabbar Gardy, Ali Hassanpour
December 17, 2020 (v1)
Keywords: desalination technologies, draw solutions, forward osmosis, membrane fouling, water desalination, water scarcity
Currently over 845 million people are believed to be living under severe water scarcity, and an estimated 2.8 billion people across the globe are projected to come under serious water scarcity by the year 2025, according to a United Nations (UN) report. Seawater desalination has gained more traction as the solution with the most potential for increasing global freshwater supplies amongst other solutions. However, the economic and energy costs associated with the major desalination technologies are considered intrinsically prohibitive largely due to their humongous energy requirements alongside the requirements of complex equipment and their maintenance in most cases. Whilst forward osmosis (FO) is being touted as a potentially more energy efficient and cost-effective alternative desalination technique, its efficiency is challenged by draw solutes and the draw solutes recovery step in FO applications alongside other challenges. This paper looks at the present situation of global water s... [more]
Editorial on Special Issue Electrolysis Processes
Tanja Vidaković-Koch
July 17, 2020 (v1)
Renewable energies such as solar, hydro or wind power are in principal abundant but subjected to strong fluctuations [...]
Special Issue on "Thin Film Processes"
Hyun Wook Jung
July 17, 2020 (v1)
Thin film processes are significantly incorporated in manufacturing display panels, secondary batteries, fuel/solar cells, catalytic films, membranes, adhesives, and other commodity films [...]
Special Issue “Green Technologies: Bridging Conventional Practices and Industry 4.0”
Pau Loke Show, Suchithra Thangalazhy-Gopakumar, Dominic C. Y. Foo
July 7, 2020 (v1)
Green technologies have been globally accepted as efficient and sustainable techniques for the utilization of natural resources [...]
Facilitation Processes and Skills Supporting EcoCity Development
Carmen Antuña-Rozado, Justo García-Navarro, Juana Mariño-Drews
June 23, 2020 (v1)
Keywords: capacity building, EcoCity, EcoCity facilitation, local adaptation, Medellín, participation, sustainable urban development, Zambia
Ecocities can provide solutions for the improvement of human settlements around the world and the living conditions therein, but in the authors’ experience, only as long as they are able to address the following questions correctly: How to formulate an ecocity concept that, considering issues of general concern, can be at the same time adapted to different local conditions? What are the instruments supporting the development and implementation of ecocity solutions? VTT’s EcoCity concept for sustainable community and neighbourhood regeneration and development has been designed in response to the first question. Likewise, specific methodologies and effective facilitation processes and skills have been developed in response to the second question. Since the methodologies have been discussed in a previous scientific article, the present one focuses on the facilitation processes and skills, and also on other related, fundamental aspects like participation, adaptation, capacity building, etc... [more]
Special Issue on “Microwave Applications in Chemical Engineering”
Huacheng Zhu, Kama Huang, Junwu Tao
June 23, 2020 (v1)
Microwave heating has been widely used in the chemical industry because of its advantages, such as fast heating rate, selective and controllable heating, increasing reaction rate and reducing by-products in chemical reactions. The Special Issue contains research on microwave applications in chemical engineering.
Characteristics and Treatment of Wastewater from the Mercaptan Oxidation Process: A Comprehensive Review
Ernesto Pino-Cortés, Silvio Montalvo, César Huiliñir, Francisco Cubillos, Juan Gacitúa
June 10, 2020 (v1)
Keywords: biological processes, electrochemical processes, oxidation processes, Petroleum, phenols, sulfides
Sulfur compounds are removed from petroleum by the addition of sodium hydroxide at a very high concentration. As a result, a residue called spent soda or spent caustic is generated, being extremely aggressive to the environment. In this work, the chemical properties of this residue are described in detail. The sodium hydroxide remains that have not reacted, sulfur compounds, and organic matter are the primary pollutants reported. Additionally, the main characteristics of the methods of treatment used to reduce them are described. This review comes from comprehensive and updated research and bibliographic analysis about the investigation on the topic. The advantages and disadvantages of the different treatment methods are highlighted. We established some criteria to set out when assessing the application of each one of these treatments is considered.
The Profile of the Foreign Investor in the Romanian Chemical Industry
Iulia Iuga, Aniela Danciu, Imola Drigă
May 22, 2020 (v1)
Keywords: chemical industry, factor analysis, foreign direct investments (FDI), the investor profile
The main aim of this study is to build the investor’s profile in the Romanian chemical industry and to highlight the factors that influenced the decision of investing in Romania rather than other Central Eastern European countries. The data collection was performed in June 2019 and the list of the 150 foreign companies from the chemical industry was obtained from The National Trade Register Office. Data used in this research were collected using a questionnaire. Dependent variable represents the probability of investing in Romania, with the option of the other Central and Eastern European countries as reference group. The main part of our analysis focus on this question: “Which were the reasons that made you decide invest in Romania?” For analysis, a number of six main classes are used: Infrastructure, labor force, Agglomeration factors, Knowledge, Market Size and Cost factors (as independent variables). Main results consist in the presence of three factors with a positive impact. The... [more]
Special Issue on Performance Measurement and Optimization for Sustainable Production Processes Improvement
Changhee Kim
May 8, 2020 (v1)
Sustainable production process improvement is very important for all enterprises as its implementation can help them to achieve development plans, scheduling, and reduce costs and pollution [...]
Liquid Biphasic System: A Recent Bioseparation Technology
Kuan Shiong Khoo, Hui Yi Leong, Kit Wayne Chew, Jun-Wei Lim, Tau Chuan Ling, Pau Loke Show, Hong-Wei Yen
March 12, 2020 (v1)
Keywords: aqueous biphasic system, aqueous two-phase system, biomolecules, liquid biphasic system, purification, recovery, separation
A well-known bioseparation technique namely liquid biphasic system (LBS) has attracted many researchers’ interest for being an alternative bioseparation technology for various kinds of biomolecules. The present review begins with an in-depth discussion on the fundamental principle of LBS and this is followed by the discussion on further development of various phase-forming components in LBS. Additionally, the implementation of various advance technologies to the LBS that is beneficial towards the efficiency of LBS for the extraction, separation, and purification of biomolecules was discussed. The key parameters affecting the LBS were presented and evaluated. Moreover, future prospect and challenges were highlighted to be a useful guide for future development of LBS. The efforts presented in this review will provide an insight for future researches in liquid-liquid separation techniques.
Evaluation of Different Treatment Processes for Landfill Leachate Using Low-Cost Agro-Industrial Materials
Tawfiq J. H. Banch, Marlia M. Hanafiah, Abbas F. M. Alkarkhi, Salem S. A. Amr, Nurul U. M. Nizam
February 12, 2020 (v1)
Keywords: coagulation, heavy metals, landfill, leachate treatment, removal efficiency, tannin
Leachate is a complex liquid that is often produced from landfills, and it contains hazardous substances that may endanger the surrounding environment if ineffectively treated. In this work, four leachate treatment applications were examined: combined leachate/palm oil mill effluent (POME) (LP), leachate/tannin (LT), pre-(leachate/tannin) followed by post-(leachate/POME) (LT/LP), and pre-(leachate/POME) followed by post-(leachate/tannin) (LP/LT). The aim of this work is to evaluate and compare the performance of these treatment applications in terms of optimizing the physicochemical parameters and removing heavy metals from the leachate. The highest efficiency for the optimization of the most targeted physicochemical parameters and the removal of heavy metals was with the LP/LT process. The results are indicative of three clusters. The first cluster involves raw leachate (cluster 1), the second contains LP and LP/LT (cluster 2), and the third also consists of two treatment applications... [more]
Gas Capture Processes
Zhien Zhang, Tohid N. Borhani, Muftah H. El-Naas, Salman Masoudi Soltani, Yunfei Yan
February 12, 2020 (v1)
Keywords: capture, Carbon Dioxide, gas emission, global warming
The increasing trends in gas emissions have had direct adverse impacts on human health and ecological habitats in the world. A variety of technologies have been deployed to mitigate the release of such gases, including CO2, CO, SO2, H2S, NOx and H2. This special issue on gas-capture processes collects 25 review and research papers on the applications of novel techniques, processes, and theories in gas capture and removal.
Showing records 1 to 25 of 102. [First] Page: 1 2 3 4 5 Last
[Show All Subjects]