Browse
Keywords
Records with Keyword: Petroleum Coke
Preparation of High Specific Surface Area Activated Carbon from Petroleum Coke by KOH Activation in a Rotary Kiln
Kechao Wang, Shaoping Xu
June 7, 2024 (v1)
Subject: Materials
Keywords: activated carbon, activation, high specific surface area, KOH, Petroleum Coke, rotary kiln
In the preparation of high specific surface area activated carbon (AC) by KOH activation, the swelling of the reactant mixture and the particles’ agglomeration deteriorates the process and the property of product. In this study, a novel method using a rotary kiln loaded with steel balls has been developed for the preparation of AC from petroleum coke (PC) by KOH activation. It has been found that the molten KOH caused the swelling of the reaction mixture at a lower activation temperature, while the molten K2O led to the particles’ agglomeration at a higher temperature. The steel balls could relieve the swelling and agglomeration and enhance the pore structure development of the AC by boosting the heat and mass transfer in the reactor. At an activation temperature of 800 °C and a KOH/PC mass ratio of 3:1, the specific surface area of the AC obtained without the addition of steel balls in the kiln is 1492 m2/g, while that with the steel balls is 1996 m2/g. The introduction of CO2 during... [more]
Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke
Hachem Hamadeh, Sannan Y. Toor, Peter L. Douglas, S. Mani Sarathy, Robert W. Dibble, Eric Croiset
March 27, 2023 (v1)
Keywords: AspenPlusTM simulation, Carbon Dioxide Capture, oxy-fuel combustion, Petroleum Coke, pressurized combustion
Petroleum coke (petcoke) is a by-product of heavy petroleum refining, with heating values comparable to that of coal. It is readily available in oil-producing countries such as the United States of America (USA) and the Kingdom of Saudi Arabia (KSA) at minimum costs and can be used as an inexpensive fossil fuel for power generation. Oxy-petcoke combustion is an attractive CO2 capture option as it avoids the use of additional absorption units and chemicals, and results in a CO2 + H2O flue gas stream that is compressed and dehydrated in a CO2 capture and purification unit (CO2CPU). The additional cost of the CO2CPU can be reduced through high pressure combustion. Hence, this paper reports a techno-economic analysis of an oxy-petcoke plant with CO2 capture simulated at pressures between 1 and 15 bars in Aspen PlusTM based on USA and KSA scenarios. Operating at high pressures leads to reduced equipment sizes and numbers of units, specifically compressors in CO2CPU, resulting in increased e... [more]
Analytics for Recovery and Reuse of Solid Wastes from Refineries
Barbara Apicella, Carmela Russo, Osvalda Senneca
February 28, 2023 (v1)
Subject: Materials
Keywords: analysis, asphalt, bitumen, combustion, Petroleum Coke, petroleum pitch, pyrolysis
Heavy fractions of petroleum have for long time been bypassed in favour of lighter fractions. Nowadays, in the framework of the “circular economy”, there is a growing interest in residual petroleum heavy fractions. The present work briefly reviews the use and characterization at laboratory scale of some low valuable solid or semi-solid products of the oil refinery industry: asphaltenes (bitumen/asphalt), pet-coke and pitch for use as fuels. The use of solid and semi-solid refinery residues, in particular, of coke as a coal substitute in thermochemical processes and of pitch and asphaltenes as material precursors, requires careful analysis, and an understanding of their structure at the molecular level is mandatory for the development of processing technology. Techniques for the characterization of typical petroleum heavy fractions such as pitches, asphaltenes and cokes are reviewed. An experimental protocol for investigating at the laboratory scale the thermochemical conversion behavio... [more]
Methods for Modeling and Optimizing the Delayed Coking Process in a Fuzzy Environment
Batyr Orazbayev, Elmira Dyussembina, Gulzhan Uskenbayeva, Aliya Shukirova, Kulman Orazbayeva
February 27, 2023 (v1)
Subject: Environment
Keywords: chemical-technological system, decision maker, delayed coking unit, linguistic model, Petroleum Coke
Technological objects and processes are often characterized by fuzzy initial information necessary for developing their models and optimization. The purpose of the study is to develop a method for synthesizing linguistic models of fuzzy described objects and a heuristic method for solving the multicriteria optimization problem in a fuzzy environment. Based on the expert assessments and logical rules of conditional inference, a method for synthesizing linguistic models was developed for describing processes with fuzzy input and output parameters. To solve the problem of multicriteria optimization, a heuristic method based on the modification and combination of various optimality principles is proposed. Coking reactor models were developed by modifying the successive regression inclusion method and the least squares method. Linguistic models of the delayed coking process were developed in the Fuzzy Logic Toolbox, allowing to evaluate the coke quality depending on the temperature and pres... [more]
Purification Methods for Captured CO2 from Petroleum Coke Oxy-Combustion Power Plants
Tia Ghantous, Ikenna J Okeke, Thomas A Adams II
October 21, 2021 (v2)
Keywords: Carbon Dioxide Capture, eco-technoeconomic analysis, oxy-combustion, Petroleum Coke
We present eco-technoeconomic analyses of four processes, including two novel designs, for the purification of captured CO2 from flue gas for a petroleum coke (petcoke) oxy-combustion power plant operated with carbon capture and sequestration (CCS). A base case petcoke oxy-combustion design obtained from a previous study consisting of flue gas water removal using condensation was used in this study. Other purification processes evaluated consist of a cryogenic distillation petcoke oxy-combustion with CCS, an oxygen deficient petcoke oxy-combustion with CCS and a catalytic dehydration petcoke oxy-combustion via hydrogen conversion with CCS. An eco-technoeconomic analysis considering greenhouse gas (GHG) emissions, levelized cost of electricity (LCOE), thermal efficiency and CO2 product purity to meet pipe-line specifications, was conducted on all purification candidates. This revealed that base case design did not meet the CO2 pipeline specifications. The highest LCOE was attributed to... [more]
Design Strategies for Oxy-Combustion Power Plant Captured CO2 Purification
Ikenna J. Okeke, Tia Ghantous, Thomas A. Adams II
June 28, 2021 (v1)
Keywords: Aspen Plus, Carbon Dioxide Capture, CO2 Purification, Oxy-combustion, Petroleum Coke
This submission contains Aspen Plus files for the design and systems performance analysis of oxy-combustion power plant captured CO2 purification using different techniques.
Comprehensive Environmental Impact Assessment of a Combined Petroleum Coke and Natural Gas to Fischer-Tropsch Diesel Process
Thomas A. Adams II
March 13, 2020 (v1)
Subject: Other
In this study, a well-to-wheels life cycle assessment was conducted to determine the environmental impacts from disposing of petroleum coke by converting it into liquid fuel. Specifically, three processes for converting petroleum coke and natural gas to Fischer Tropsch diesel were investigated, both with and without carbon capture and sequestration (CCS). Impact categories were calculated using the EPA’s TRACI 2.1 US-Canada 2008 midpoint method in SimaPro software. In addition, the impact of grid emissions on the overall process was assessed using two representative Canadian locations with high (Alberta) and low (Ontario) grid emissions. The results of each impact category were compared among the designs and against conventional petroleum and oil-sands derived diesel. Key findings showed that the proposed designs when operated using CCS in the low-emissions-grid location had lower life cycle GHG emissions than conventional petroleum and oil-sands derived diesel. Nevertheless, the vario... [more]
Systems Design of a Petroleum Coke IGCC Power Plant: Technical, Economic, and Life cycle Perspectives
Ikenna Joseph Okeke, Thomas A Adams II
July 12, 2019 (v1)
Keywords: Carbon Dioxide Capture, Electricity, Gasification, IGCC, Life Cycle Analysis, Petroleum Coke
The petroleum coke gasification integrated gasification combined cycle power plant (petcoke-IGCC) is a promising avenue for disposal of the ever-growing amount of stockpiled petroleum coke. In this work, we present a novel techno-economic and life cycle assessment of the process operated with carbon capture and sequestration. The proposed petcoke-to-electricity plant is designed and simulated in Aspen Plus v10. The proposed power plant was compared against coal integrated gasification combined cycle (coal-IGCC) and supercritical pulverized coal power plants operated with carbon capture and sequestration. The results showed that although the efficiency of the coal-IGCC plant is higher than the petcoke-IGCC plant, the higher energy density of the petcoke and lower resource costs were such that the levelized cost of electricity of petcoke-IGCC was lower than coal-IGCC. Furthermore, the feed flow rate of petcoke to the petcoke-IGCC process is approximately 15% lower than the coal feed rate... [more]
Techno-Economic Analysis of Combining Petroleum Coke and Natural Gas for Efficient Liquid Fuels Production
Ikenna Joseph Okeke, Thomas A Adams II
October 30, 2018 (v1)
Waste petcoke can be converted to liquid fuels instead of stockpiling which reduces the net CO2 emission by displacing additional petroleum usage. In this study, three petcoke to liquid fuels designs were compared based on the following performance criteria: conversion efficiency, economics, and environmental impacts. The designs considered were petcoke gasification only, a combination of natural gas reforming and petcoke gasification, and natural gas reforming integrated in the petcoke gasification step. The processes were modeled and simulated using a combination of Aspen Plus v10, ProMax, and gProms software. Each of the configurations were designed to operate with and without carbon capture and sequestration (CCS) technology along with a corresponding carbon emission penalty. Performance metrics analyzed were the net present value, minimum diesel selling price, cost of CO2 avoided, and cradle to plant exit gate life cycle greenhouse gas emissions. From the analysis, the integration... [more]
Combining Petroleum Coke and Natural Gas for Efficient Liquid Fuels Production
Ikenna J Okeke, Thomas A Adams II
August 28, 2018 (v1)
This work explores the technical feasibility and economic profitability of converting petroleum coke (petcoke) and natural gas to liquid fuels via Fischer-Tropsch synthesis. Different petcoke conversion strategies were examined to determine the conversion pathway which can be competitive with current market prices with little or no adverse environmental impacts. Three main design approaches were considered: petcoke gasification only, combined petcoke gasification and natural gas reforming through traditional processing steps, and combined petcoke gasification and natural gas reforming by directly integrating the gasifier’s radiant cooler with the gas reformer. The designs investigated included scenarios with and without carbon capture and sequestration, and with and without CO2 emission tax penalties. The performance metrics considered included net present value, life cycle greenhouse gas emissions, and the cost of CO2 avoided. The design configuration that integrated natural gas refor... [more]
Petroleum coke and Natural gas-To-Liquids Aspen Plus Simulation
Ikenna J Okeke, Thomas A Adams II
July 19, 2018 (v1)
Keywords: Aspen Plus, Fischer-Tropsch Synthesis, Integrated Reforming, Petroleum Coke
Six Aspen Plus simulation files for the conversion of petroleum coke and/or natural gas to liquid fuels (synthetic gasoline and diesel) are presented. The base simulation files were designed with carbon capture and sequestration (CCS) technology with the corresponding plant without CCS.

The processes may include various technologies such as petcoke gasification, integrated gasification and autothermal natural gas reforming, gas cleaning, water gas shift reaction, MDEA based carbon capture, Claus process, FT synthesis, and other processing steps.

The six processes are: PSG_CCS (petcoke standalone gasification with CCS), PSG_No_CCS (petcoke standalone gasification without CCS), PG-INGR_CCS (petcoke gasification integrated natural gas reformer with CCS), PG-INGR_No_CCS (petcoke gasification integrated natural gas reformer without CCS), PG-ENGR_CCS (petcoke gasification external natural gas reformer with CCS), PG-ENGR_No_CCS (petcoke gasification external natural gas reformer with... [more]
[Show All Keywords]