Records Added in October 2023
Records added in October 2023
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December
Optimal capacity design of amine-based onboard CO2 capture systems considering flexible ship operations
Juyoung Oh, Donghoi Kim, Simon Roussanaly, Rahul Anantharaman, youngsub Lim
October 18, 2023 (v1)
Keywords: MEA-based CO2 capture process, Off-design performance, Onboard carbon capture, Ship engine load profile, Techno-economic assessment
The International Maritime Organization has adopted a strategy aiming for net-zero greenhouse gas emissions from international shipping, prompting various mitigation technologies to comply with this strengthened strategy. Carbon capture technologies are increasingly being considered to satisfy the IMO strategy. In particular, amine-based carbon capture technologies, which are emerging as the most mature option, have been proposed for onboard application. However, the conventional design approach for onboard carbon capture systems, which assumes a fixed high engine load (75–100%), does not reflect flexible ship operation in a low engine load range, consequently leading to oversizing and unnecessary capital investment.
This study designs five MEA-based onboard carbon capture systems with different capacities (sizes) based on the exhaust gas conditions. The study investigates the off-design performance over the entire engine load range while maintaining the capacity of the capture syste... [more]
What is the potential of bioCCS to deliver negative emissions in Norway? From biomass mapping to a window of negative emissions potential
Nikalet Everson, Michael Becidan, Simon Roussanaly, Rahul Anantharaman, Petronelle Holt, Roger Khalil
October 3, 2023 (v1)
Subject: Biosystems
Keywords: BioCCS, Bioenergy, Mapping, Negative emission, Norway
Negative emissions have been highlighted as a key component of achieving the net-zero ambition. However, ground-up approaches are necessary to better understand the realistic potential of negative emissions technologies at the national or continental level. Such an approach was applied in the present study to bioenergy with carbon capture and storage in Norway, starting from mapping and quantification of biomass until the derivation of a window of negative emission potential.
The results indicate that bioenergy with carbon capture and storage could enable between 1 and 13 MtCO2/y of negative emissions, with a more probable range between 2 and 8 MtCO2/y at least in the coming decades. These values are drastically higher than the potential identified in previous studies thus highlighting the importance of bottom-up approaches, like the one adopted here, to better estimate the potential negative emissions from bioenergy with carbon capture and storage.
In terms of biomass, the strongest... [more]
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December