Browse
Records Added in December 2020
Records added in December 2020
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 11 to 35 of 110. [First] Page: 1 2 3 4 5 Last
Process Optimization for Green Synthesis of Silver Nanoparticles Using Indonesian Medicinal Plant Extracts
Kartini Kartini, Amarisa Alviani, Dia Anjarwati, Adinda Finna Fanany, Johan Sukweenadhi, Christina Avanti
December 22, 2020 (v1)
Keywords: Curcuma longa, green synthesis, Orthosiphon stamineus, Phyllanthus niruri, silver nanoparticles
Silver nanoparticles (AgNPs) are an interesting metal nanoparticle that can be incorporated into pharmaceutical products, including for diabetic foot ulcers as an antimicrobial agent. Green synthesis of AgNPs using plant extracts has been drawing much attention as it is simple, eco-friendly, stable, and cost-effective. This present study was performed to evaluate the potential of three Indonesian medicinal plant extracts, namely Phyllanthus niruri (PN), Orthosiphon stamineus (OS), and Curcuma longa (CL), as reducing and capping agents in the green synthesis of AgNPs, and to optimize their concentrations. Based on the yields and characteristics of the formed nanoparticles, which were analyzed using a UV-Vis spectrophotometer, particle size analyzer, scanning electron microscope, and X-ray diffractometer, Phyllanthus niruri extract at a concentration of 0.5% was concluded as the best extract in the green synthesis of AgNPs. It is thereby a prospective reducing and capping agent for furth... [more]
Determination of a Bubble Drag Coefficient during the Formation of Single Gas Bubble in Upward Coflowing Liquid
Przemysław Luty, Mateusz Prończuk
December 22, 2020 (v1)
Subject: Other
Keywords: bubble diameter, bubble formation, concurrently flowing liquid, drag coefficient, force balance
Bubble flow is present in many processes that are the subject of chemical engineering research. Many correlations for determination of the equivalent bubble diameter can be found in the scientific literature. However, there are only few describing the formation of gas bubbles in flowing liquid. Such a phenomenon occurs for instance in airlift apparatuses. Liquid flowing around the gas bubble creates a hydraulic drag force that leads to reduction of the formed bubble diameter. Usually the value of the hydraulic drag coefficient, cD, for bubble formation in the flowing liquid is assumed to be equal to the drag coefficient for bubbles rising in the stagnant liquid, which is far from the reality. Therefore, in this study, to determine the value of the drag coefficient of bubbles forming in flowing liquid, the diameter of the bubbles formed at different liquid velocity was measured using the shadowgraphy method. Using the balance of forces affecting the bubble formed in the coflowing liquid... [more]
Evaluation of the Turbulence Model Influence on the Numerical Simulation of Cavitating Flow with Emphasis on Temperature Effect
Yilin Deng, Jian Feng, Fulai Wan, Xi Shen, Bin Xu
December 22, 2020 (v1)
Keywords: cavitating flow, thermal effect, thermosensitive fluid, turbulence model
The aim of this paper is to investigate the influence of different turbulence models (k−ε, RNG k−ε, and SST k−ω) on the numerical simulation of cavitating flow in thermosensitive fluid. The filter-based model and density correction method were employed to correct the turbulent viscosity of the three turbulence models. Numerical results obtained were compared to experimental ones which were conducted on the NACA0015 hydrofoil at different temperatures. The applicability of the numerical solutions of different turbulence model was studied in detail. The modified RNG k−ε model has higher accuracy in the calculation of cavitating flow at different temperatures.
Targeting Collagen Type III in Proteinuric Kidney Disease: Informing Drug Potential Using the Jaccard−Tanimoto Index
Michelle Liu, Anoushka Dalvi, Sony Dalapati, Natalia Prakash, Zhijian Hu, Ping Zhou, Kai Jiang, Anthony Pellicano, Itzhak D. Goldberg, Prakash Narayan
December 22, 2020 (v1)
Subject: Biosystems
Keywords: collagen type III, discovery, drug, glomerulus, kidney, medicine, precision, proteinuria, transcriptomic
Collagenofibrotic glomerulopathy, a collagen type III kidney disease, is associated with proteinuria and accumulation ofcollagen type III in the glomerulus specifically the mesangium and/or capillary walls. The puromcyin aminonucleoside (PAN) nephropathy model was evaluated to examine the relation between COL3A1 mRNA and proteinuria. In Wistar rats administered PAN, a robust increase in proteinuria was accompanied by glomerular hypertrophy and expansion of both the Bowman’s capsule and Bowman’s space. An ~4-fold increase in renal COL3A1 mRNA was observed in the PAN cohort with urine protein exhibiting a direct (r = 0.8) and significant correlation with kidney COL3A1 mRNA level. Both Picrosirius red polarized microscopy and immunohistochemical analysis showed localization of collagen type III to the glomerular mesangium. Gene ontology-driven transcriptomic analysis reveals a robust COL3A1 network in the glomerular compartment.
Qualitative and Quantitative Analysis of Heavy Crude Oil Samples and Their SARA Fractions with 13C Nuclear Magnetic Resonance
Ilfat Rakhmatullin, Sergey Efimov, Vladimir Tyurin, Marat Gafurov, Ameen Al-Muntaser, Mikhail Varfolomeev, Vladimir Klochkov
December 22, 2020 (v1)
Subject: Materials
Keywords: 13C NMR spectroscopy, aromaticity, crude oil, oil fraction, quantitative composition, SARA
Nuclear magnetic resonance (NMR) approaches have unique advantages in the analysis of crude oil because they are non-destructive and provide information on chemical functional groups. Nevertheless, the correctness and effectiveness of NMR techniques for determining saturates, aromatics, resins, and asphaltenes (SARA analysis) without oil fractioning are still not clear. In this work we compared the measurements and analysis of high-resolution 13C NMR spectra in B0 ≈ 16.5 T (NMR frequency of 175 MHz) with the results of SARA fractioning for four various heavy oil samples with viscosities ranging from 100 to 50,000 mPa·s. The presence of all major hydrocarbon components both in crude oil and in each of its fractions was established quantitatively using NMR spectroscopy. Contribution of SARA fractions in the aliphatic (10−60 ppm) and aromatic (110−160 ppm) areas of the 13C NMR spectra were identified. Quantitative fractions of aromatic molecules and oil functional groups were determined.... [more]
An Overview of Household Energy Consumption and Carbon Dioxide Emissions in Iran
Omeid Rahmani, Shahabaldin Rezania, Amin Beiranvand Pour, Shahram M. Aminpour, Mohammad Soltani, Yousef Ghaderpour, Bahareh Oryani
December 22, 2020 (v1)
Subject: Energy Policy
Keywords: CO2 emissions, energy consumption, household, Iran
This review tends to obtain a deeper understanding of the methods used in household energy consumption and carbon dioxide (CO2) emissions in Iran. Issues relating to energy consumption and CO2 emissions are very complex. This complexity arises from the fact that energy demand and energy consumption in Iran are influenced by many factors, such as income, household size, age, and gender. In Iran, the relevant energy sources mostly include liquefied petroleum gas (LPG) and electricity, which are used for different sectors, such as transportation, industry, and residential. This overview looks at both the theories and empirical studies of household energy consumption and CO2 emissions in Iran. Since energy consumption typically results in air pollution, it is often used as an indicator of environmental degradation. Although Iran is recently faced to energy efficiency improvement from all sectors, household energy requirements have been significantly increased. In Iran, a prime motivator ha... [more]
Technical Aspects of Biofuel Production from Different Sources in Malaysia—A Review
Shahabaldin Rezania, Bahareh Oryani, Jinwoo Cho, Farzaneh Sabbagh, Parveen Fatemeh Rupani, Amirreza Talaiekhozani, Negar Rahimi, Majid Lotfi Ghahroud
December 22, 2020 (v1)
Subject: Energy Policy
Keywords: biodiesel, bioethanol, biofuel production, biogas, biohydrogen, Malaysia
Due to the depletion of fossil fuels, biofuel production from renewable sources has gained interest. Malaysia, as a tropical country with huge resources, has a high potential to produce different types of biofuels from renewable sources. In Malaysia, biofuels can be produced from various sources, such as lignocellulosic biomass, palm oil residues, and municipal wastes. Besides, biofuels are divided into two main categories, called liquid (bioethanol and biodiesel) and gaseous (biohydrogen and biogas). Malaysia agreed to reduce its greenhouse gas (GHG) emissions by 45% by 2030 as they signed the Paris agreement in 2016. Therefore, we reviewed the status and potential of Malaysia as one of the main biofuel producers in the world in recent years. The role of government and existing policies have been discussed to analyze the outlook of the biofuel industries in Malaysia.
Experimental and Numerical Investigation on Improved Design for Profiled Freezing-tube of FSPR
Yin Duan, Chuanxin Rong, Hua Cheng, Haibing Cai, Zongjin Wang, Zhishu Yao
December 22, 2020 (v1)
Keywords: freeze-sealing pipe roof method, freezing tube, improved design, numerical simulation, scaled model test, temperature field
The freeze-sealing pipe roof (FSPR) method, which combines the pipe roof method (PRM) with the artificial ground freezing (AGF) method, has been successfully utilized for the first time in the Gongbei Tunnel Project in China. During the construction process, there have been practical problems such as difficulty in welding of the profiled freezing-tube, easy leakage of refrigerant, and working environment pollution, which bring difficulties to the tunnel construction and may affect the further promotion of this new method in the future. To address these problems, a method of placing double circular freezing-tubes on the inner wall of the hollow pipe and wrapped with cement mortar was put forward to replace the welding profiled freezing-tube in the actual project. By designing a scaled model test, the feasibility and freezing effect of this improved design were verified. The corresponding numerical calculation model was established to study the distribution characteristics and difference... [more]
The Effect of Wettability and Flow Rate on Oil Displacement Using Polymer-Coated Silica Nanoparticles: A Microfluidic Study
Mohamed Omran, Salem Akarri, Ole Torsaeter
December 22, 2020 (v1)
Subject: Other
Keywords: EOR, microfluidics, nano-silica, nanoflooding, nanotechnology, wettability alteration
Polymer-coated silica nanoparticles (PSiNPs) have been experimentally investigated in core- and micro-scale studies for enhanced oil recovery (EOR). Wettability and flow rate have a considerable effect on oil displacement in porous media. This work investigates the efficiency of PSiNPs for oil recovery on micro-scale at three wettability states (water-wet, intermediate-wet, and oil-wet). In addition, a cluster mobilization regime is considered in all experiments. A microfluidic approach was utilized to perform flooding experiments with constant experimental settings such as flowrate, pore-structure, initial oil topology, porosity, and permeability. In this study, the wettability of the microfluidic chips was altered to have three states of wettability. Firstly, a micro-scale study (brine-oil-glass system) of each wettability condition effect on flow behavior was conducted via monitoring dynamic changes in the oleic phase. Secondly, the obtained results were used as a basis to understan... [more]
Performance, Emissions, Combustion and Vibration Analysis of a CI Engine Fueled with Coconut and Used Palm Cooking Oil Methyl Ester
Yew Heng Teoh, Heoy Geok How, Navaneetha Krishnan Balakrishnan, Thanh Danh Le, Huu Tho Nguyen
December 22, 2020 (v1)
Keywords: coconut, combustion, emissions, non-edible oil, vibration, waste cooking oil
Biodiesels from coconut and palm cooking oil are viable alternatives to diesel fuel due to their environmental sustainability and similar physicochemical properties compared to diesel. In the present study, these fuels were tested separately in a diesel engine by blending with fossil diesel in proportions of 10%, 20%, 30% and 40% by volume. Experiments were conducted under a constant brake mean effective pressure (BMEP) of 400 kPa and at 2000 rpm. The results revealed similarities in engine performance, emissions, combustion and engine block vibration for used palm cooking oil methyl ester (UPME) fuel blends and coconut methyl ester (CME) fuel blends. Most blends resulted in slight improvements in brake specific energy consumption (BSEC) and brake thermal efficiency (BTE). A maximum reduction of 54%, 89% and 16.8% in pollutant emissions of brake specific hydrocarbons (BSHC), brake specific carbon monoxide (BSCO) and brake specific nitrogen oxides (BSNOx), respectively, was observed wit... [more]
Tetracycline Induces the Formation of Biofilm of Bacteria from Different Phases of Wastewater Treatment
Tereza Stachurová, Kateřina Malachová, Jaroslav Semerád, Meta Sterniša, Zuzana Rybková, Sonja Smole Možina
December 22, 2020 (v1)
Subject: Biosystems
Keywords: biofilm, tetracycline, tetracycline resistance bacteria, tetracycline resistance genes, wastewater treatment plant
The study monitored the effect of tetracycline on bacterial biofilm formation and compared biofilm formation by resistant bacterial strains in different phases of the wastewater treatment process in wastewater treatment plant (WWTP). The crystal violet staining method was used to evaluate the biofilm formation. Biofilm-related bacterial properties were characterized by hydrophobicity, autoaggregation and motility tests. The relative abundance of tetracycline resistance genes (tetW, tetM, tetO, tetA and tetB) in wastewaters were subsequently quantified using qPCR. The results show that the isolates from the nitrification tank produce biofilm with up to 10 times greater intensity relative to the isolates from the sedimentation tank. In isolates of Aeromonas sp. from the nitrification tank, increased biofilm production in the occurrence of tetracycline from a concentration of 0.03125 µg/mL was observed. The tetW gene showed the highest relative abundance out of all the tested genes. From... [more]
Application of Novel Techniques for Monitoring Quality Changes in Meat and Fish Products during Traditional Processing Processes: Reconciling Novelty and Tradition
Abdo Hassoun, María Guðjónsdóttir, Miguel A. Prieto, Paula Garcia-Oliveira, Jesus Simal-Gandara, Federico Marini, Francesca Di Donato, Angelo Antonio D’Archivio, Alessandra Biancolillo
December 22, 2020 (v1)
Keywords: control, curing, drying, Fermentation, muscle foods, preservation, process optimization, spectroscopy
In this review, we summarize the most recent advances in monitoring changes induced in fish and other seafood, and meat and meat products, following the application of traditional processing processes by means of conventional and emerging advanced techniques. Selected examples from the literature covering relevant applications of spectroscopic methods (i.e., visible and near infrared (VIS/NIR), mid-infrared (MIR), Raman, nuclear magnetic resonance (NMR), and fluorescence) will be used to illustrate the topics covered in this review. Although a general reluctance toward using and adopting new technologies in traditional production sectors causes a relatively low interest in spectroscopic techniques, the recently published studies have pointed out that these techniques could be a powerful tool for the non-destructive monitoring and process optimization during the production of muscle food products.
Distributed Optimization for Active Distribution Network Considering the Balance of Multi-Stakeholder
Yang Liu, Sanming Liu, Zhuangzhuang Niu
December 22, 2020 (v1)
Keywords: active distribution network, alternating direction method of multipliers, bi-level model, distributed dispatching, multi-stakeholder
Nowadays, distributed power generation is highly valued and fully developed since the energy crisis is worsening. At the same time, the distribution system operator is becoming a new stakeholder to take part in the dispatch of the active distribution network (ADN) with the power market being further reformed. Some new challenges to the dispatching of the ADN are brought by these distribution system operators (DSO), which break the traditional requirement of the lowest operating cost. In this paper, the relationship between the maximum revenue and the minimum operating cost of the ADN is fully considered, and the model of the bi-level distributed ADN considering the benefits and privacy protection of multi-stakeholder is established precisely. Further, the model is solved by using the alternating direction method of multipliers (ADMM) in which the safety and economy of the ADN are fully considered. Finally, the validity of the model and the feasibility of the algorithm are verified by u... [more]
Magnetic Multiwall Carbon Nanotube Decorated with Novel Functionalities: Synthesis and Application as Adsorbents for Lead Removal from Aqueous Medium
Ghadir Hanbali, Shehdeh Jodeh, Othman Hamed, Roland Bol, Bayan Khalaf, Asma Qdemat, Subhi Samhan, Omar Dagdag
December 22, 2020 (v1)
Subject: Materials
Keywords: Adsorption, isotherm, kinetics, lead, magnetic multiwall carbon nanotube, thermodynamic
Water pollution is one of the major challenges facing modern society because of industrial development and urban growth. This study is directed towards assessing the use of multiwall carbon nanotube, after derivatization and magnetization, as a new and renewable absorbent, to remove toxic metal ions from waste streams. The adsorbents were prepared by, first oxidation of multiwall carbon nanotube, then derivatizing the oxidized product with hydroxyl amine, hydrazine and amino acid. The adsorbents were characterized by various techniques. The adsorption efficiency of the multiwall carbon nanotube adsorbents toward Pb(II) was investigated. The effect of adsorbent’s dose, temperature, pH, and time on the adsorption efficiency were studied and the adsorption parameters that gave the highest efficiency were determined. The derivatives have unique coordination sites that included amine, hydroxyl, and carboxyl groups, which are excellent chelating agents for metal ions. The thermodynamic and k... [more]
Flow and Noise Characteristics of Centrifugal Fan in Low Pressure Environment
Xilong Zhang, Yongliang Zhang, Chenggang Lu
December 22, 2020 (v1)
Subject: Other
Keywords: centrifugal fan, negative pressure, noise characteristics, power consumption, sound pressure
The influence of low-pressure environment on centrifugal fan’s flow and noise characteristics was studied experimentally and numerically. A testbed was established to conduct the experimental test on the performance of a centrifugal fan, and the characteristic curve and power consumption curve of the fan under different pressure were obtained. Then the simulation model of the centrifugal fan was established, which was used to simulate the working process of centrifugal fan under different negative pressures. The results showed that the total pressure and static pressure of the fan decrease with the decrease of the ambient pressure. The total and static pressures of the fan under 60 kPa pressure condition decreased by 42.3% and 38.3%, respectively, compared with those of fan under the normal pressure. The main reason for this phenomenon is that the decrease of the environmental pressure leads to the decrease of air density. Besides, with the drop of environmental pressure, the sound pre... [more]
Solid Particle Erosion Behaviour and Protective Coatings for Gas Turbine Compressor Blades—A Review
Jasem Alqallaf, Naser Ali, Joao A. Teixeira, Abdulmajid Addali
December 22, 2020 (v1)
Keywords: compressor blades surface, cycle efficiency, erosion models, gas turbine engines, SPE
Gas turbines (GTEs) are often utilised in harsh environments where the GT components, including compressor vanes and rotor blades, are subject to erosion damage by sand and dust particles. For instance, in a desert environment, the rate of damage made by solid particles erosion (SPE) becomes severe, and therefore results in degradation to the GTE parts, lowering the cycle efficiency, reducing the device lifetime, and increasing the overall cost of the operation. As such, understanding the erosion mechanism caused by solid particles and the effects associated with it is crucial for selecting the appropriate countermeasures and maintaining the system performance. This review paper provides a survey of the available studies on SPE effects on GTEs and surface protective coatings. Firstly, the ductile and brittle SPE mechanism is presented, as well as the ductile-brittle transition region. Then, an in-depth focus on the parameters associated with the SPE, such as particles properties and im... [more]
Material Point Method Simulation of the Equation of State of Polymer-Bonded Explosive under Impact Loading at Mesoscale
Siyu Ge, Wenying Zhang, Jian Sang, Shuai Yuan, Glenn V. Lo, Yusheng Dou
December 22, 2020 (v1)
Keywords: equation of state, impact loading, material point method, mesoscale numerical simulation, polymer-bonded explosives
Mesoscale simulation using the material point method (MPM) was conducted to study the pressure−volume (PV) variations of Octahydro-1,3,5,7-Tetranitro-1,2,3,5-Tetrazocine (HMX)/Estane polymer-bonded explosive (PBX) under impact loading. The PV isotherms and Hugoniot data were calculated for the different porosities and binder volume fractions. The PV isotherms were used to determine the parameters for the Birch− Murnaghan equation of state (EOS) for the PBX. From the EOS, the isothermal bulk modulus (K0) and its pressure derivative (K′0) were calculated. Additionally, the pseudo particle velocity and pseudo shock velocity variations were used to obtain the bulk wave speed c and dimensionless coefficient s for the Mie−Grüneisen EOS. The simulations provide an alternative approach for determining an EOS that is consistent with experimental observations.
A General Review of the Current Development of Mechanically Agitated Vessels
Marek Jaszczur, Anna Młynarczykowska
December 22, 2020 (v1)
Keywords: agitated vessel, fluid mixing, rotary mixer, stirred tank
The mixing process in a mechanically agitated vessel is a widespread phenomenon which plays an important role among industrial processes. In that process, one of the crucial parameters, the mixing efficiency, depends on a large number of geometrical factors, as well as process parameters and complex interactions between the phases which are still not well understood. In the last decade, large progress has been made in optimisation, construction and numerical and experimental analysis of mechanically agitated vessels. In this review, the current state in this field has been presented. It shows that advanced computational fluid dynamic techniques for multiphase flow analysis with reactions and modern experimental techniques can be used with success to analyse in detail mixing features in liquid-liquid, gas-liquid, solid-liquid and in more than two-phase flows. The objective is to show the most important research recently carried out.
N-Tosylcarboxamide in C−H Functionalization: More than a Simple Directing Group
Benjamin Large, Vincent Terrasson, Damien Prim
December 22, 2020 (v1)
Keywords: C–H functionalization, Catalysis, directing group, tosylbenzamide
C−H activation with transition metal catalysis has become an important tool in organic synthesis for the functionalization of low reactive bonds and the preparation of complex molecules. The choice of the directing group (DG) proves to be crucial for the selectivity in this type of reaction, and several different functional groups have been used efficiently. This review describes recent advances in C−H functionalization of aromatic rings directed by a N-tosylcarboxamide group. Results regarding alkenylation, alkoxylation, halogenation, and arylation of C−H in the ortho position to the tosylcarboxamide are presented. Moreover, the advantage of this particular directing group is that it can undergo further transformation and act as CO or CON fragment reservoir to produce, in sequential fashion or one-pot sequence, various interesting (hetero)cycles such as phenanthridinones, dihydroisoquinolinones, fluorenones, or isoindolinones.
Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems
Gustavo Meirelles, Bruno Brentan, Joaquín Izquierdo, Edevar Luvizotto Jr
December 22, 2020 (v1)
Subject: Optimization
Keywords: benchmarking problems, Optimization, swarm optimization
Agent-based algorithms, based on the collective behavior of natural social groups, exploit innate swarm intelligence to produce metaheuristic methodologies to explore optimal solutions for diverse processes in systems engineering and other sciences. Especially for complex problems, the processing time, and the chance to achieve a local optimal solution, are drawbacks of these algorithms, and to date, none has proved its superiority. In this paper, an improved swarm optimization technique, named Grand Tour Algorithm (GTA), based on the behavior of a peloton of cyclists, which embodies relevant physical concepts, is introduced and applied to fourteen benchmarking optimization problems to evaluate its performance in comparison to four other popular classical optimization metaheuristic algorithms. These problems are tackled initially, for comparison purposes, with 1000 variables. Then, they are confronted with up to 20,000 variables, a really large number, inspired in the human genome. The... [more]
Residue Char Derived from Microwave-Assisted Pyrolysis of Sludge as Adsorbent for the Removal of Methylene Blue from Aqueous Solutions
Gong Cheng, Yazhuo Li, Liming Sun, Siyi Luo, George Z. Kyzas, Jie Fu
December 22, 2020 (v1)
Keywords: Adsorption, methylene blue, microwave pyrolysis, residue char, sewage sludge
Residue char is the main by-product of the microwave-assisted pyrolysis of activated sludge and it has a high content of fixed carbon and porous structure, but little is known about its character as an absorbent. In this study, residue char of activated sludge with microwave-assisted pyrolysis was used as an adsorbent to absorb methylene blue. The effects of pyrolysis temperature, pyrolysis holding time, contact time, and adsorption temperature on the adsorption ability of residue char were investigated. Kinetics, isotherm, and thermodynamic models were also included to study the adsorption behavior. The results showed that the optimal pyrolysis condition was 15 min and 603 °C, and the adsorption capacity reached up to 80.01 mg/g. The kinetics analyses indicated the adsorption behavior followed the pseudo-second-order kinetics model and the adsorption process was mainly due to chemical interaction. The adsorption isotherm was described by Freundlich model and thus, its process was mult... [more]
Prediction Model of Suspension Density in the Dense Medium Separation System Based on LSTM
Cheng Zheng, Jianjun Deng, Zhixin Hong, Guanghui Wang
December 22, 2020 (v1)
Keywords: dense medium separation, LSTM, prediction model, suspension density
In the dense medium separation system of coal preparation plant, the fluctuation of raw coal ash and lag of suspension density adjustment often causes the instability of product quality. To solve this problem, this study established a suspension density prediction model for the dense medium separation system based on Long Short-Term Memory (LSTM). First, the historical data in the dense medium separation system of a coal preparation plant were collected and preprocessed. Moving average and cubic exponential smoothing methods were used to replace abnormal data and to fill in the missing data, respectively. Second, a LSTM network was used to construct the density prediction model, and the optimal number of time steps, hidden layers, and nodes was determined. Finally, the model was employed on a testing set for prediction, and a Back-Propagation (BP) network without a time series was used for comparison. Root Mean Squared Error (RMSE) were the minimum when the number of the hidden layers,... [more]
Comparative Study of Angiotensin I-Converting Enzyme (ACE) Inhibition of Soy Foods as Affected by Processing Methods and Protein Isolation
Cíntia L. Handa, Yan Zhang, Shweta Kumari, Jing Xu, Elza I. Ida, Sam K. C. Chang
December 22, 2020 (v1)
Keywords: hydrolysates, hypertension, peptides
Angiotensin converting enzyme (ACE) converts angiotensin I into the vasoconstrictor angiotensin II and eventually elevates blood pressure. High blood pressure is a major risk factor for heart disease and stroke. Studies show peptides present anti-hypertensive activity by ACE inhibition. During food processing and digestion, food proteins may be hydrolyzed and release peptides. Our objective was to determine and compare the ACE inhibitory potential of fermented and non-fermented soy foods and isolated 7S and 11S protein fractions. Soy foods (e.g., soybean, natto, tempeh, yogurt, soymilk, tofu, soy-sprouts) and isolated proteins were in vitro digested prior to the determination of ACE inhibitory activity. Peptide molecular weight distribution in digested samples was analyzed and correlated with ACE inhibitory capacity. Raw and cooked soymilk showed the highest ACE inhibitory potential. Bacteria-fermented soy foods had higher ACE inhibitory activity than fungus-fermented soy food, and 3 d... [more]
Tracing the Scientific History of Fe0-Based Environmental Remediation Prior to the Advent of Permeable Reactive Barriers
Viet Cao, Huichen Yang, Arnaud Igor Ndé-Tchoupé, Rui Hu, Willis Gwenzi, Chicgoua Noubactep
December 22, 2020 (v1)
Subject: Materials
Keywords: corrosion products, dissolved oxygen, permeable reactive barriers, water treatment, zero-valent iron
The technology of using metallic iron (Fe0) for in situ generation of iron oxides for water treatment is a very old one. The Fe0 remediation technology has been re-discovered in the framework of groundwater remediation using permeable reactive barriers (PRBs). Despite its simplicity, the improvement of Fe0 PRBs is fraught with difficulties regarding their operating modes. The literature dealing with Fe0 remediation contains ambiguities regarding its invention and its development. The present paper examines the sequence of contributions prior to the advent of Fe0 PRBs in order to clarify the seemingly complex picture. To achieve this, the current paper addresses the following questions: (i) What were the motivations of various authors in developing their respective innovations over the years?, (ii) what are the ancient achievements which can accelerate progress in knowledge for the development of Fe0 PRBs?, and (iii) was Fe0 really used for the removal of organic species for the first t... [more]
Viscous Loss Analysis of the Flooded Electro-Hydrostatic Actuator Motor under Laminar and Turbulent Flow States
Yanpeng Li, Zongxia Jiao, Tian Yu, Yaoxing Shang
December 22, 2020 (v1)
Subject: Other
Keywords: electro-hydrostatic actuator (EHA), energy gradient theory, lumped parameter model, motor, viscous friction loss
The electro-hydrostatic actuator (EHA) is one of the most prevalent types of power-by-wire (PBW) actuation systems. With the increase in EHA power density, using the pump’s leakage oil to cool the motor has been gradually adopted to solve the problem of excessive motor temperature. However, the viscous friction loss caused by the liquid viscosity will seriously affect the heat dissipation effect and dynamic performance of the motor. To calculate the motor viscosity loss accurately, a novel calculation method is proposed in this paper. Using the energy gradient theory, the relationship between the fluid flow state and the rotation speed is analyzed. In addition, the lumped parameter model of viscous loss is established by using the conservation of momentum theory and computational fluid dynamics (CFD) simulation. A test rig is designed to test the viscous friction loss for various rotation speeds, and the test results show a good agreement with the theoretical analysis. The present resu... [more]
Showing records 11 to 35 of 110. [First] Page: 1 2 3 4 5 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December