Browse
Keywords
Records with Keyword: Machine Learning
Showing records 176 to 200 of 700. [First] Page: 4 5 6 7 8 9 10 11 12 Last
Forecasting Electricity Prices Using Deep Neural Networks: A Robust Hyper-Parameter Selection Scheme
Grzegorz Marcjasz
April 3, 2023 (v1)
Keywords: artificial neural network, deep learning, electricity price forecasting, hyper-parameter optimization, Machine Learning
Deep neural networks are rapidly gaining popularity. However, their application requires setting multiple hyper-parameters, and the performance relies strongly on this choice. We address this issue and propose a robust ex-ante hyper-parameter selection procedure for the day-ahead electricity price forecasting that, when used jointly with a tested forecast averaging scheme, yields high performance throughout three-year long out-of-sample test periods in two distinct markets. Being based on a grid search with models evaluated on long samples, the methodology mitigates the noise induced by local optimization. Forecast averaging across calibration window lengths and hyper-parameter sets allows the proposed methodology to outperform a parameter-rich least absolute shrinkage and selection operator (LASSO)-estimated model and a deep neural network (DNN) with non-optimized hyper-parameters in terms of the mean absolute forecast error.
Nonlinear Optimization of Turbine Conjugate Heat Transfer with Iterative Machine Learning and Training Sample Replacement
Sandip Dutta, Reid Smith
April 3, 2023 (v1)
Keywords: conjugate thermal analysis, heat transfer, Machine Learning, Optimization, thermal design, turbine cooling
A simple yet effective optimization technique is developed to solve nonlinear conjugate heat transfer. The proposed Nonlinear Optimization with Replacement Strategy (NORS) is a mutation of several existing optimization processes. With the improvements of 3D metal printing of turbine components, it is feasible to have film holes with unconventional diameters, as these holes are created while printing the component. This paper seeks to optimize each film hole diameter at the leading edge of a turbine vane to satisfy several optimum thermal design objectives with given design constraints. The design technique developed uses linear regression-based machine learning model and further optimizes with strategic improvement of the training dataset. Optimization needs cost and benefit criteria are used to base its decision of success, and cost is minimized with maximum benefit within given constraints. This study minimizes the coolant flow (cost) while satisfying the constraints on average metal... [more]
On-Line Diagnosis and Fault State Classification Method of Photovoltaic Plant
Jun-Hyun Shin, Jin-O Kim
April 3, 2023 (v1)
Keywords: health index, Machine Learning, on-line diagnosis, operation and maintenance, photovoltaic plant, reliability
This paper presents an on-line diagnosis method for large photovoltaic (PV) power plants by using a machine learning algorithm. Most renewable energy output power is decreased due to the lack of management tools and the skills of maintenance engineers. Additionally, many photovoltaic power plants have a long down-time due to the absence of a monitoring system and their distance from the city. The IEC 61724-1 standard is a Performance Ratio (PR) index that evaluates the PV power plant performance and reliability. However, the PR index has a low recognition rate of the fault state in conditions of low irradiation and bad weather. This paper presents a weather-corrected index, linear regression method, temperature correction equation, estimation error matrix, clearness index and proposed variable index, as well as a one-class Support Vector Machine (SVM) method and a kernel technique to classify the fault state and anomaly output power of PV plants.
Design Space Exploration of Turbulent Multiphase Flows Using Machine Learning-Based Surrogate Model
Himakar Ganti, Manu Kamin, Prashant Khare
March 31, 2023 (v1)
Keywords: gaussian processes, large eddy simulation (LES), Machine Learning, turbulent multiphase flows
This study focuses on establishing a surrogate model based on machine learning techniques to predict the time-averaged spatially distributed behaviors of vaporizing liquid jets in turbulent air crossflow for momentum flux ratios between 5 and 120. This surrogate model extends a previously developed Gaussian-process-based framework applicable to laminar flows to accommodate turbulent flows and demonstrates that in addition to detailed fields of primitive variables, second-order turbulence statistics can also be predicted using machine learning techniques. The framework proceeds in 3 steps—(1) design of experiment studies to identify training points and conducting high-fidelity calculations to build the training dataset; (2) Gaussian process regression (supervised training) for the range of operating conditions under consideration for gaseous and dispersed phase quantities; and (3) error quantification of the surrogate model by comparing the machine learning predictions with the truth mo... [more]
Predicting Renewable Energy Investment Using Machine Learning
Govinda Hosein, Patrick Hosein, Sanjay Bahadoorsingh, Robert Martinez, Chandrabhan Sharma
March 31, 2023 (v1)
Subject: Energy Policy
Keywords: electricity pricing, energy policy, Machine Learning, neural network, regression, Renewable and Sustainable Energy
In order to combat climate change, many countries have promised to bolster Renewable Energy (RE) production following the Paris Agreement with some countries even setting a goal of 100% by 2025. The reasons are twofold: capitalizing on carbon emissions whilst concomitantly benefiting from reduced fossil fuel dependence and the fluctuations associated with imported fuel prices. However, numerous countries have not yet made preparations to increase RE production and integration. In many instances, this reluctance seems to be predominant in energy-rich countries, which typically provide heavy subsidies on electricity prices. With such subsidies, there is no incentive to invest in RE since the time taken to recoup such investments would be significant. We develop a model using a Neural Network (NN) regression algorithm to quantitatively illustrate this conjecture and also use it to predict the reduction in electricity price subsidies required to achieve a specified RE production target. Th... [more]
Fault Diagnosis of a Granulator Operating under Time-Varying Conditions Using Canonical Variate Analysis
Elena Quatrini, Xiaochuan Li, David Mba, Francesco Costantino
March 31, 2023 (v1)
Keywords: canonical variate analysis, condition monitoring, Machine Learning, multivariate methods, performance estimation, pharmaceutical plant
Granulators play a key role in many pharmaceutical processes because they are involved in the production of tablets and capsule dosage forms. Considering the characteristics of the production processes in which a granulator is involved, proper maintenance of the latter is relevant for plant safety. During the operational phase, there is a high risk of explosion, pollution, and contamination. The nature of this process also requires an in-depth examination of the time-dependence of the process variables. This study proposes the application of canonical variate analysis (CVA) to perform fault detection in a granulation process that operates under time-varying conditions. Beyond this, a different approach to the management of process non-linearities is proposed. The novelty of the study is in the application of CVA in this kind of process, because it is possible to state that the actual literature on the theme shows some limitations of CVA in such processes. The aim was to increase the ap... [more]
A Machine Learning Solution for Data Center Thermal Characteristics Analysis
Anastasiia Grishina, Marta Chinnici, Ah-Lian Kor, Eric Rondeau, Jean-Philippe Georges
March 31, 2023 (v1)
Keywords: clustering, data center, Energy Efficiency, Machine Learning, thermal characteristics analysis, unsupervised learning
The energy efficiency of Data Center (DC) operations heavily relies on a DC ambient temperature as well as its IT and cooling systems performance. A reliable and efficient cooling system is necessary to produce a persistent flow of cold air to cool servers that are subjected to constantly increasing computational load due to the advent of smart cloud-based applications. Consequently, the increased demand for computing power will inadvertently increase server waste heat creation in data centers. To improve a DC thermal profile which could undeniably influence energy efficiency and reliability of IT equipment, it is imperative to explore the thermal characteristics analysis of an IT room. This work encompasses the employment of an unsupervised machine learning technique for uncovering weaknesses of a DC cooling system based on real DC monitoring thermal data. The findings of the analysis result in the identification of areas for thermal management and cooling improvement that further fee... [more]
AE-LSTM Based Deep Learning Model for Degradation Rate Influenced Energy Estimation of a PV System
Muhammad Aslam, Jae-Myeong Lee, Mustafa Raed Altaha, Seung-Jae Lee, Sugwon Hong
March 31, 2023 (v1)
Keywords: auto-encoder, deep learning, degradation rate, LSTM, Machine Learning, PV energy estimation, solar radiation forecasting
With the increase in penetration of photovoltaics (PV) into the power system, the correct prediction of return on investment requires accurate prediction of decrease in power output over time. Degradation rates and corresponding degraded energy estimation must be known in order to predict power delivery accurately. Solar radiation plays a key role in long-term solar energy predictions. A combination of auto-encoder and long short-term memory (AE-LSTM) based deep learning approach is adopted for long-term solar radiation forecasting. First, the auto-encoder (AE) is trained for the feature extraction, and then fine-tuning with long short-term memory (LSTM) is done to get the final prediction. The input data consist of clear sky global horizontal irradiance (GHI) and historical solar radiation. After forecasting the solar radiation for three years, the corresponding degradation rate (DR) influenced energy potentials of an a-Si PV system is estimated. The estimated energy is useful economi... [more]
Combine Clustering and Machine Learning for Enhancing the Efficiency of Energy Baseline of Chiller System
Chun-Wei Chen, Chun-Chang Li, Chen-Yu Lin
March 31, 2023 (v1)
Keywords: clustering, energy baselines, Machine Learning
Energy baseline is an important method for measuring the energy-saving benefits of chiller system, and the benefits can be calculated by comparing prediction models and actual results. Currently, machine learning is often adopted as a prediction model for energy baselines. Common models include regression, ensemble learning, and deep learning models. In this study, we first reviewed several machine learning algorithms, which were used to establish prediction models. Then, the concept of clustering to preprocess chiller data was adopted. Data mining, K-means clustering, and gap statistic were used to successfully identify the critical variables to cluster chiller modes. Applying these key variables effectively enhanced the quality of the chiller data, and combining the clustering results and the machine learning model effectively improved the prediction accuracy of the model and the reliability of the energy baselines.
Rack Temperature Prediction Model Using Machine Learning after Stopping Computer Room Air Conditioner in Server Room
Kosuke Sasakura, Takeshi Aoki, Masayoshi Komatsu, Takeshi Watanabe
March 31, 2023 (v1)
Subject: Environment
Keywords: continuous and reliable operation, data center, Machine Learning, server room, temperature environment, temperature prediction
Data centers (DCs) are becoming increasingly important in recent years, and highly efficient and reliable operation and management of DCs is now required. The generated heat density of the rack and information and communication technology (ICT) equipment is predicted to get higher in the future, so it is crucial to maintain the appropriate temperature environment in the server room where high heat is generated in order to ensure continuous service. It is especially important to predict changes of rack intake temperature in the server room when the computer room air conditioner (CRAC) is shut down, which can cause a rapid rise in temperature. However, it is quite difficult to predict the rack temperature accurately, which in turn makes it difficult to determine the impact on service in advance. In this research, we propose a model that predicts the rack intake temperature after the CRAC is shut down. Specifically, we use machine learning to construct a gradient boosting decision tree mo... [more]
Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods
Ahmad Almaghrebi, Fares Aljuheshi, Mostafa Rafaie, Kevin James, Mahmoud Alahmad
March 31, 2023 (v1)
Keywords: charging behavior, charging demand, data-driven, Machine Learning, Plug-in Electric Vehicle, public charging stations
Plug-in Electric Vehicle (PEV) user charging behavior has a significant influence on a distribution network and its reliability. Generally, monitoring energy consumption has become one of the most important factors in green and micro grids; therefore, predicting the charging demand of PEVs (the energy consumed during the charging session) could help to efficiently manage the electric grid. Consequently, three machine learning methods are applied in this research to predict the charging demand for the PEV user after a charging session starts. This approach is validated using a dataset consisting of seven years of charging events collected from public charging stations in the state of Nebraska, USA. The results show that the regression method, XGBoost, slightly outperforms the other methods in predicting the charging demand, with an RMSE equal to 6.68 kWh and R2 equal to 51.9%. The relative importance of input variables is also discussed, showing that the user’s historical average demand... [more]
Air Temperature Forecasting Using Machine Learning Techniques: A Review
Jenny Cifuentes, Geovanny Marulanda, Antonio Bello, Javier Reneses
March 31, 2023 (v1)
Keywords: air temperature forecasting, Artificial Intelligence, Machine Learning, neural networks, support vector machines
Efforts to understand the influence of historical climate change, at global and regional levels, have been increasing over the past decade. In particular, the estimates of air temperatures have been considered as a key factor in climate impact studies on agricultural, ecological, environmental, and industrial sectors. Accurate temperature prediction helps to safeguard life and property, playing an important role in planning activities for the government, industry, and the public. The primary aim of this study is to review the different machine learning strategies for temperature forecasting, available in the literature, presenting their advantages and disadvantages and identifying research gaps. This survey shows that Machine Learning techniques can help to accurately predict temperatures based on a set of input features, which can include the previous values of temperature, relative humidity, solar radiation, rain and wind speed measurements, among others. The review reveals that Deep... [more]
Synthetic Data Generator for Electric Vehicle Charging Sessions: Modeling and Evaluation Using Real-World Data
Manu Lahariya, Dries F. Benoit, Chris Develder
March 31, 2023 (v1)
Keywords: electric vehicle, exponential distribution, Gaussian mixture models, Machine Learning, mathematical modeling, Poisson distribution, Simulation, smart grid, synthetic data
Electric vehicle (EV) charging stations have become prominent in electricity grids in the past few years. Their increased penetration introduces both challenges and opportunities; they contribute to increased load, but also offer flexibility potential, e.g., in deferring the load in time. To analyze such scenarios, realistic EV data are required, which are hard to come by. Therefore, in this article we define a synthetic data generator (SDG) for EV charging sessions based on a large real-world dataset. Arrival times of EVs are modeled assuming that the inter-arrival times of EVs follow an exponential distribution. Connection time for EVs is dependent on the arrival time of EV, and can be described using a conditional probability distribution. This distribution is estimated using Gaussian mixture models, and departure times can calculated by sampling connection times for EV arrivals from this distribution. Our SDG is based on a novel method for the temporal modeling of EV sessions, and... [more]
Multi-Horizon Forecasting of Global Horizontal Irradiance Using Online Gaussian Process Regression: A Kernel Study
Hanany Tolba, Nouha Dkhili, Julien Nou, Julien Eynard, Stéphane Thil, Stéphane Grieu
March 29, 2023 (v1)
Keywords: global horizontal irradiance, Machine Learning, online Gaussian process regression, online sparse Gaussian process regression, solar resource, time series forecasting
In the present paper, global horizontal irradiance (GHI) is modelled and forecasted at time horizons ranging from 30 min to 48 h, thus covering intrahour, intraday and intraweek cases, using online Gaussian process regression (OGPR) and online sparse Gaussian process regression (OSGPR). The covariance function, also known as the kernel, is a key element that deeply influences forecasting accuracy. As a consequence, a comparative study of OGPR and OSGPR models based on simple kernels or combined kernels defined as sums or products of simple kernels has been carried out. The classic persistence model is included in the comparative study. Thanks to two datasets composed of GHI measurements (45 days), we have been able to show that OGPR models based on quasiperiodic kernels outperform the persistence model as well as OGPR models based on simple kernels, including the squared exponential kernel, which is widely used for GHI forecasting. Indeed, although all OGPR models give good results whe... [more]
Acceleration of Premixed Flames in Obstructed Pipes with Both Extremes Open
Abdulafeez Adebiyi, Olatunde Abidakun, V’yacheslav Akkerman
March 29, 2023 (v1)
Keywords: computational simulations, flame acceleration, Machine Learning, obstructed channels, premixed combustion, thermal expansion
Premixed flame propagation in obstructed channels with both extremes open is studied by means of computational simulations of the reacting flow equations with a fully-compressible hydrodynamics, transport properties (heat conduction, diffusion and viscosity) and an Arrhenius chemical kinetics. The aim of this paper is to distinguish and scrutinize various regimes of flame propagation in this configuration depending on the geometrical and thermal-chemical parameters. The parametric study includes various channel widths, blockage ratios, and thermal expansion ratios. It is found that the interplay of these three critical parameters determines a regime of flame propagation. Specifically, either a flame propagates quasi-steady, without acceleration, or it experiences three consecutive distinctive phases (quasi-steady propagation, acceleration and saturation). This study is mainly focused on the flame acceleration regime. The accelerating phase is exponential in nature, which correlates wel... [more]
Transition Modeling for Low Pressure Turbines Using Computational Fluid Dynamics Driven Machine Learning
Harshal D. Akolekar, Fabian Waschkowski, Yaomin Zhao, Roberto Pacciani, Richard D. Sandberg
March 29, 2023 (v1)
Keywords: low pressure turbine, Machine Learning, multi-objective optimization, transition, turbulence modeling
Existing Reynolds Averaged Navier−Stokes-based transition models do not accurately predict separation induced transition for low pressure turbines. Therefore, in this paper, a novel framework based on computational fluids dynamics (CFD) driven machine learning coupled with multi-expression and multi-objective optimization is explored to develop models which can improve the transition prediction for the T106A low pressure turbine at an isentropic exit Reynolds number of Re2is=100,000. Model formulations are proposed for the transfer and laminar eddy viscosity terms of the laminar kinetic energy transition model using seven non-dimensional pi groups. The multi-objective optimization approach makes use of cost functions based on the suction-side wall-shear stress and the pressure coefficient. A family of solutions is thus developed, whose performance is assessed using Pareto analysis and in terms of physical characteristics of separated-flow transition. Two models are found which bring th... [more]
AI and Text-Mining Applications for Analyzing Contractor’s Risk in Invitation to Bid (ITB) and Contracts for Engineering Procurement and Construction (EPC) Projects
Su Jin Choi, So Won Choi, Jong Hyun Kim, Eul-Bum Lee
March 28, 2023 (v1)
Keywords: Artificial Intelligence, engineering-procurement-construction (EPC), information retrieval, invitation-to-bid (ITB) document, Machine Learning, named-entity recognition (NER), natural language processing (NLP), phrasematcher, Python, spaCy, text mining
Contractors responsible for the whole execution of engineering, procurement, and construction (EPC) projects are exposed to multiple risks due to various unbalanced contracting methods such as lump-sum turn-key and low-bid selection. Although systematic risk management approaches are required to prevent unexpected damage to the EPC contractors in practice, there were no comprehensive digital toolboxes for identifying and managing risk provisions for ITB and contract documents. This study describes two core modules, Critical Risk Check (CRC) and Term Frequency Analysis (TFA), developed as a digital EPC contract risk analysis tool for contractors, using artificial intelligence and text-mining techniques. The CRC module automatically extracts risk-involved clauses in the EPC ITB and contracts by the phrase-matcher technique. A machine learning model was built in the TFA module for contractual risk extraction by using the named-entity recognition (NER) method. The risk-involved clauses col... [more]
Machine Learning-Based Identification Strategy of Fuel Surrogates for the CFD Simulation of Stratified Operations in Low Temperature Combustion Modes
Valerio Mariani, Leonardo Pulga, Gian Marco Bianchi, Stefania Falfari, Claudio Forte
March 28, 2023 (v1)
Keywords: Bayesian algorithm, gasoline surrogate, Machine Learning, stratified fuel, surrogate fuel
Many researchers in industry and academia are showing an increasing interest in the definition of fuel surrogates for Computational Fluid Dynamics simulation applications. This need is mainly driven by the necessity of the engine research community to anticipate the effects of new gasoline formulations and combustion modes (e.g., Homogeneous Charge Compression Ignition, Spark Assisted Compression Ignition) to meet future emission regulations. Since those solutions strongly rely on the tailored mixture distribution, the simulation and accurate prediction of the mixture formation will be mandatory. Focusing purely on the definition of surrogates to emulate liquid phase and liquid-vapor equilibrium of gasolines, the following target properties are considered in this work: density, Reid vapor pressure, chemical macro-composition and volatility. A set of robust algorithms has been developed for the prediction of volatility and Reid vapor pressure. A Bayesian optimization algorithm based on... [more]
Big Data Value Chain: Multiple Perspectives for the Built Environment
Gema Hernández-Moral, Sofía Mulero-Palencia, Víctor Iván Serna-González, Carla Rodríguez-Alonso, Roberto Sanz-Jimeno, Vangelis Marinakis, Nikos Dimitropoulos, Zoi Mylona, Daniele Antonucci, Haris Doukas
March 28, 2023 (v1)
Subject: Environment
Keywords: analytics, Artificial Intelligence, Big Data, building stock, Machine Learning
Current climate change threats and increasing CO2 emissions, especially from the building stock, represent a context where action is required. It is necessary to provide efficient manners to manage energy demand in buildings and contribute to a decarbonised future. By combining new technologies, such as artificial intelligence, Internet of things, blockchain, and the exploitation of big data towards solving real life problems, the way could be paved towards smart and energy-aware buildings. In this context, the aim of this paper is to present a critical review and an in-detail definition of the big data value chain for the built environment in Europe, covering multiple needs and perspectives: “policy”, “technology” and “business”, in order to explore the main challenges and opportunities in this area.
Fuel Economy Improvement of Urban Buses with Development of an Eco-Drive Scoring Algorithm Using Machine Learning
Kibok Kim, Jinil Park, Jonghwa Lee
March 28, 2023 (v1)
Keywords: eco-drive system, fuel economy, Machine Learning, urban buses
Eco-drive is a widely used concept. It can improve fuel economy for different driving behaviors such as vehicle acceleration or accelerator pedal operation, deceleration or coasting while slowing down, and gear shift timing difference. The feasibility of improving the fuel economy of urban buses by applying eco-drive was verified by analyzing data from drivers who achieved high fuel efficiencies in urban buses with a high frequency of acceleration/deceleration and frequent operation. The items that were monitored for eco-drive were: rapid take-off/acceleration/deceleration, accelerator pedal gradient, coasting rate, shift indicator violation, average engine speed, over speed, and gear shifting under low-end engine speed. The monitoring method for each monitored item was set up, and an index was produced using driving data. A fuel economy prediction model was created using machine learning to determine the contribution of each index to the fuel economy. Furthermore, the contribution of... [more]
A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction
Leidy Gutiérrez, Julian Patiño, Eduardo Duque-Grisales
March 28, 2023 (v1)
Keywords: artificial neural networks, k-nearest neighbors, linear regression, Machine Learning, photovoltaic systems, prediction, supervised learning, support vector machine
Science seeks strategies to mitigate global warming and reduce the negative impacts of the long-term use of fossil fuels for power generation. In this sense, implementing and promoting renewable energy in different ways becomes one of the most effective solutions. The inaccuracy in the prediction of power generation from photovoltaic (PV) systems is a significant concern for the planning and operational stages of interconnected electric networks and the promotion of large-scale PV installations. This study proposes the use of Machine Learning techniques to model the photovoltaic power production for a system in Medellín, Colombia. Four forecasting models were generated from techniques compatible with Machine Learning and Artificial Intelligence methods: K-Nearest Neighbors (KNN), Linear Regression (LR), Artificial Neural Networks (ANN) and Support Vector Machines (SVM). The results obtained indicate that the four methods produced adequate estimations of photovoltaic energy generation.... [more]
Optimization of Fracturing Parameters with Machine-Learning and Evolutionary Algorithm Methods
Zhenzhen Dong, Lei Wu, Linjun Wang, Weirong Li, Zhengbo Wang, Zhaoxia Liu
March 28, 2023 (v1)
Subject: Optimization
Keywords: evolutionary algorithms, fracturing parameter optimization, Machine Learning, net present value, production prediction
Oil production from tight oil reservoirs has become economically feasible because of the combination of horizontal drilling and multistage hydraulic fracturing. Optimal fracture design plays a critical role in successful economical production from a tight oil reservoir. However, many complex parameters such as fracture spacing and fracture half-length make fracturing treatments costly and uncertain. To improve fracture design, it is essential to determine reasonable ranges for these parameters and to evaluate their effects on well performance and economic feasibility. In traditional analytical and numerical simulation methods, many simplifications and assumptions are introduced for artificial fracture characterization and gas percolation mechanisms, and their implementation process remains complicated and computationally inefficient. Most previous studies on big data-driven fracturing parameter optimization have been based on only a single output, such as expected ultimate recovery, an... [more]
Applications of Machine Learning to Consequence Analysis of Hypothetical Accidents at Barakah Nuclear Power Plant Unit 1
Mohannad Khameis Almteiri, Juyoul Kim
March 28, 2023 (v1)
Keywords: classification, Machine Learning, nuclear accident, nuclear power plant, regression
The United Arab Emirates (UAE) built four nuclear power plants at the Barakah site to supply 25% of the region’s electricity. Among the Barakah Nuclear Power Plants, (BNPPs), their main objectives are to achieve the highest possible safety for the environment, operators, and community members; quality nuclear reactors and energy; and power production efficiency. To meet these objectives, decision-makers must access large amounts of data in the case of a nuclear accident to prevent the release of radioactive materials. Machine learning offers a feasible solution to propose early warnings and help contain accidents. Thus, our study aimed at developing and testing a machine learning model to classify nuclear accidents using the associated release of radioactive materials. We used Radiological Assessment System for Consequence Analysis (RASCAL) software to estimate the concentration of released radioactive materials in the four seasons of the year 2020. We applied these concentrations as p... [more]
Prediction of Occupant Behavior toward Natural Ventilation in Japanese Dwellings: Machine Learning Models and Feature Selection
Kaito Furuhashi, Takashi Nakaya, Yoshihiro Maeda
March 28, 2023 (v1)
Keywords: Japanese dwellings, Machine Learning, natural ventilation, occupant behavior, prediction
Occupant behavior based on natural ventilation has a significant impact on building energy consumption. It is important for the quantification of occupant-behavior models to select observed variables, i.e., features that affect the state of window opening and closing, and to consider machine learning models that are effective in predicting this state. In this study, thermal comfort was investigated, and machine learning data were analyzed for 30 houses in Gifu, Japan. Among the selected machine learning models, the logistic regression and deep neural network models produced consistently excellent results. The accuracy of the prediction of open and closed windows differed among the models, and the factors influencing the window-opening behaviors of the occupants differed from those influencing their window-closing behavior. In the selection of features, the analysis using thermal indices representative of the room and cooling features showed excellent results, indicating that cooling fe... [more]
Solar Photovoltaic Modules’ Performance Reliability and Degradation Analysis—A Review
Oyeniyi A. Alimi, Edson L. Meyer, Olufemi I. Olayiwola
March 28, 2023 (v1)
Subject: Materials
Keywords: characterization, data-driven analytics, degradation, Machine Learning, photovoltaics
The current geometric increase in the global deployment of solar photovoltaic (PV) modules, both at utility-scale and residential roof-top systems, is majorly attributed to its affordability, scalability, long-term warranty and, most importantly, the continuous reduction in the levelized cost of electricity (LCOE) of solar PV in numerous countries. In addition, PV deployment is expected to continue this growth trend as energy portfolio globally shifts towards cleaner energy technologies. However, irrespective of the PV module type/material and component technology, the modules are exposed to a wide range of environmental conditions during outdoor deployment. Oftentimes, these environmental conditions are extreme for the modules and subject them to harsh chemical, photo-chemical and thermo-mechanical stress. Asides from manufacturing defects, these conditions contribute immensely to PV module’s aging rate, defects and degradation. Therefore, in recent times, there has been various inves... [more]
Showing records 176 to 200 of 700. [First] Page: 4 5 6 7 8 9 10 11 12 Last
[Show All Keywords]