Browse
Keywords
Records with Keyword: Methanol
51. LAPSE:2023.5317
A Comparison of Ethanol, Methanol, and Butanol Blending with Gasoline and Its Effect on Engine Performance and Emissions Using Engine Simulation
February 23, 2023 (v1)
Subject: Energy Systems
Air pollution, especially in large cities around the world, is associated with serious problems both with people’s health and the environment. Over the past few years, there has been a particularly intensive demand for alternatives to fossil fuels, because when they are burned, substances that pollute the environment are released. In addition to the smoke from fuels burned for heating and harmful emissions that industrial installations release, the exhaust emissions of vehicles create a large share of the fossil fuel pollution. Alternative fuels, known as non-conventional and advanced fuels, are derived from resources other than fossil fuels. Because alcoholic fuels have several physical and propellant properties similar to those of gasoline, they can be considered as one of the alternative fuels. Alcoholic fuels or alcohol-blended fuels may be used in gasoline engines to reduce exhaust emissions. This study aimed to develop a gasoline engine model to predict the influence of different... [more]
52. LAPSE:2023.3734
A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency
February 22, 2023 (v1)
Subject: Materials
Keywords: Carbon Dioxide, hydrogenation, membrane reactor, Methanol, zeolite
Clean methanol can play an important role in achieving net zero emission targets by decarbonizing the energy and chemical sectors. Conventionally, methanol is produced by using fossil fuel as raw material, which releases a significant amount of greenhouse gases (GHGs) into the environment. Clean methanol, which is produced by hydrogen (H2) from renewable sources (green H2) and captured carbon dioxide (CO2), is totally free from the influence of fossil fuel. Due to its vast applications, clean methanol has potential to substitute for fossil fuels while preventing further GHGs emissions. This review addresses the feasibility of producing clean methanol from renewable resources, i.e., green H2 and captured CO2. Availability of these raw materials is the main factor involved in establishing the circular economy of methanol, therefore, their potential sources and the possible pathways to access these sources are also summarized. Renewable energy sources such as solar, wind and biomass shoul... [more]
53. LAPSE:2023.2758
Effects of Methanol Application on Carbon Emissions and Pollutant Emissions Using a Passenger Vehicle
February 21, 2023 (v1)
Subject: Energy Systems
Keywords: emissions, GDI engine, Methanol, passenger vehicle, performance
Methanol, as a promising carbon-neutral fuel, has become a research hotspot worldwide. In this study, pure gasoline and gasoline blended with five different volume ratios of methanol (10%, 20%, 30%, 50%, and 75%) were selected as test fuels, which were referred to as M0, M10, M20, M30, M50, and M75. The experiments on carbon and pollutant emissions and performance were carried out on a passenger vehicle with gasoline direct injection (GDI) turbocharged engine using the steady-state, new European driving cycle (NEDC), and acceleration approaches. The results show that under steady-state conditions, as the methanol blending ratio increases, the volume of fuel consumption increases. Compared with pure gasoline, the equivalent fuel consumption and the CO2 emissions are reduced by 0.95 L/100 km (10.6%) and 18.95 g/km (9.6%) in maximum extent by fueling M75, respectively. In the NEDC, the CO2 emissions of M30 are reduced by 5.46 g/km (3.7%) compared with pure gasoline. After blending methano... [more]
54. LAPSE:2023.2570
Model-Based Analysis for Ethylene Carbonate Hydrogenation Operation in Industrial-Type Tubular Reactors
February 21, 2023 (v1)
Subject: Process Operations
Keywords: ethylene carbonate hydrogenation, ethylene glycol, Methanol, multiscale reactor model, operation window, reactor analysis
Hydrogenation of ethylene carbonate (EC) to co-produce methanol (MeOH) and ethylene glycol (EG) offers an atomically economic route for CO2 utilization. Herein, aided with bench and pilot plant data, we established engineering a kinetics model and multiscale reactor models for heterogeneous EC hydrogenation using representative industrial-type reactors. Model-based analysis indicates that single-stage adiabatic reactors, despite a moderate temperature rise of 12 K, suffer from a narrow operational window delimited by EC condensation at lower temperatures and intense secondary EG hydrogenation at higher temperatures. Boiling water cooled multi-tubular reactors feature near-isothermal operation and exhibit better operability, especially under high pressure and low space velocity. Conduction oil-cooled reactors show U-type axial temperature profiles, rendering even wider operational windows regarding coolant temperatures than the water-cooled reactor. The revelation of operational charact... [more]
55. LAPSE:2023.1891
Pinch Analysis for Heat Integration of Pulverized Coke Chemical Looping Gasification Coupled with Coke-Oven Gas to Methanol and Ammonia
February 21, 2023 (v1)
Subject: Energy Systems
Keywords: ammonia, coke-oven gas, Heat Exchanger Network, heat integration, Methanol, pinch analysis
Methanol and ammonia are important chemical materials in the chemical industry. During the production of methanol and ammonia, a large amount of waste heat is released. The waste heat can be used to save energy and reduce CO2 emissions. In this study, pinch analysis is used to design the heat exchanger network (HEN) of pulverized coke (PC) chemical looping gasification coupled with coke-oven gas (COG) to methanol and ammonia (PCCLHG-CGTMA). The heat integration process is accomplished in two ways, as mentioned below. (1) The HENs in each of the three heat exchange units are designed individually; (2) the HENs of the three heat exchange units are treated as a whole and designed simultaneously. Compared to the HEN designed individually, when the HENs are designed as a whole, a total of 112.12 MW of hot and cold utilities are saved. In the HENs designed as a whole, the reduction in operating cost is sufficient to offset the increase in capital cost; the total annual cost (TAC) is reduced... [more]
56. LAPSE:2023.1140
Snail Shells as a Heterogeneous Catalyst for Biodiesel Fuel Production
February 21, 2023 (v1)
Subject: Materials
Keywords: biodiesel, heterogeneous catalysis, Methanol, oil, Optimization, snail shells
Homogeneous catalysis is relevant for biodiesel fuel synthesis; however, it has the disadvantage of difficult separation of the catalyst. In the present work, heterogeneous catalysis was applied for rapeseed oil transesterification with methanol, while snail shells were used as a catalyst. CaO content in the catalyst was investigated. Transesterification reactions were carried out in a laboratory reactor, ester yield was analyzed using gas chromatography. Response surface methodology was used for process optimization. It was found that the optimum transesterification conditions when the reaction temperature is 64 °C are the following: a catalyst amount of 6.06 wt%, a methanol-to-oil molar ratio of 7.51:1, and a reaction lasting 8 h. An ester yield of 98.15 wt% was obtained under these conditions.
57. LAPSE:2021.0615
Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits
July 19, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: human health, legal limits, manufacturing processes, Methanol, quality control, spirits, volatile composition
Spirits are alcoholic beverages commonly consumed in European countries. Their raw materials are diverse and include fruits, cereals, honey, sugar cane, or grape pomace. The main aim of this work is to present and discuss the source, quality control, and legal limits of methanol in spirits produced using fruit and honey spirits. The impact of the raw material, alcoholic fermentation, and the distillation process and aging process on the characteristics and quality of the final distilled beverage are discussed. In addition, a critical view of the legal aspects related to the volatile composition of these distillates, the origin and presence of methanol, and the techniques used for quantification are also described. The methanol levels found in the different types of spirits are those expected based on the specific raw materials of each and, almost in all studies, respect the legal limits.
58. LAPSE:2021.0444
Heat Transfer Improvement in MHD Natural Convection Flow of Graphite Oxide/Carbon Nanotubes-Methanol Based Casson Nanofluids Past a Horizontal Circular Cylinder
May 26, 2021 (v1)
Subject: Modelling and Simulations
Keywords: Casson nanofluid, CNTs, constant heat flux, GO, horizontal circular cylinder, Methanol, MHD
This numerical investigation intends to present the impact of nanoparticles volume fraction, Casson, and magnetic force on natural convection in the boundary layer region of a horizontal cylinder in a Casson nanofluid under constant heat flux boundary conditions. Methanol is considered as a host Casson fluid. Graphite oxide (GO), single and multiple walls carbon nanotubes (SWCNTs and MWCNTs) nanoparticles have been incorporated to support the heat transfer performances of the host fluid. The Keller box technique is employed to solve the transformed governing equations. Our numerical findings were in an excellent agreement with the preceding literature. Graphical results of the effect of the relevant parameters on some physical quantities related to examine the behavior of Casson nanofluid flow were obtained, and they confirmed that an augmentation in Casson parameter results in a decline in local skin friction, velocity, or temperature, as well as leading to an increment in local Nusse... [more]
59. LAPSE:2021.0100
Aspen Plus Simulation of a Rectisol Process for Blue Hydrogen Production
March 12, 2021 (v2)
Subject: Modelling and Simulations
Keywords: Aspen Plus, Carbon Dioxide Capture, Hydrogen, Methanol, Modelling, Rectisol, Simulation, Syngas
This is an Aspen Plus v12 model for a Rectisol process used for removing CO2 from a shifted syngas stream arising from steam methane reforming for the purposes of Blue hydrogen production. It is intended for educational use, and is useful as a starting point for those interested in simulating this process. It is not optimized in any way, but it contains a working flowsheet for those interested in modifying it for your own purposes.
The simulation was developed using the simulation strategy given in Adams TA II, Khojestah Salkuyeh Y, Nease J. Processes and Simulations for Solvent-based CO2Capture and Syngas Cleanup. Chapter in: Reactor and process design for in sustainable energy technology. Elsevier (2014). Pages 163-232. ISBN: 978-0-444-59566-9. It is based on the process discussed in Doctor RD, Molburg JC, Thimmapuram PR, Berry GF, Livengood CD. Gasification combined cycle: carbon dioxide recovery, transport, and disposal. US DOE Report, Argonne National Laboratory ANL/ESD-24. 19... [more]
The simulation was developed using the simulation strategy given in Adams TA II, Khojestah Salkuyeh Y, Nease J. Processes and Simulations for Solvent-based CO2Capture and Syngas Cleanup. Chapter in: Reactor and process design for in sustainable energy technology. Elsevier (2014). Pages 163-232. ISBN: 978-0-444-59566-9. It is based on the process discussed in Doctor RD, Molburg JC, Thimmapuram PR, Berry GF, Livengood CD. Gasification combined cycle: carbon dioxide recovery, transport, and disposal. US DOE Report, Argonne National Laboratory ANL/ESD-24. 19... [more]
60. LAPSE:2019.1078
Optimal Design of a Distillation System for the Flexible Polygeneration of Dimethyl Ether and Methanol Under Uncertainty
October 22, 2019 (v2)
Subject: Process Design
Keywords: Dimethyl Ether, Distillation, Flexible polygeneration, Methanol, Optimization, Polygeneration, Process Design Under Uncertainty
This presentation concerns the promising new area of flexible polygeneration, a chemical process design concept in which a chemical plant is able to change its product outputs throughout its lifetime in response to changing market conditions, business objectives, or other external factors. In this talk we present a new flexible polygeneration process system that can switch between dimethyl ether (DME) or methanol production, depending on need. Classic flexible polygeneration systems typically utilize separate process trains for each product, in which whole process trains are turned on or off (or up or down) depending on the current product. However, our proposed process combines the two process trains into one, in which most of the process equipment is always used during either mode of production, but with different operating conditions. In this work, we show how this significantly reduces capital expenditure, reduces the plant footprint, and ultimately is more economical than a tradit... [more]
61. LAPSE:2018.1062
Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers
November 27, 2018 (v1)
Subject: Other
Keywords: acidity, color/visual examination, DGA, diagnostics, dissolved decay products, DP, free radicals, FTIR spectroscopy, furan, gas chromatography-mass spectrometry coupling, HPLC, inhibitor content, insulating oil/paper, interfacial tension, Methanol, moisture, particle count, power transformers, turbidity, UV/visible spectroscopy, viscosity
A power transformer outage has a dramatic financial consequence not only for electric power systems utilities but also for interconnected customers. The service reliability of this important asset largely depends upon the condition of the oil-paper insulation. Therefore, by keeping the qualities of oil-paper insulation system in pristine condition, the maintenance planners can reduce the decline rate of internal faults. Accurate diagnostic methods for analyzing the condition of transformers are therefore essential. Currently, there are various electrical and physicochemical diagnostic techniques available for insulation condition monitoring of power transformers. This paper is aimed at the description, analysis and interpretation of modern physicochemical diagnostics techniques for assessing insulation condition in aged transformers. Since fields and laboratory experiences have shown that transformer oil contains about 70% of diagnostic information, the physicochemical analyses of oil... [more]
62. LAPSE:2018.0757
Fumed Silica Nanoparticles Incorporated in Quaternized Poly(Vinyl Alcohol) Nanocomposite Membrane for Enhanced Power Densities in Direct Alcohol Alkaline Fuel Cells
October 23, 2018 (v1)
Subject: Materials
Keywords: cell performance, Ethanol, fumed silica, ionic conductivity, Methanol, quaternized poly(vinyl alcohol)
A nanocomposite polymer membrane based on quaternized poly(vinyl alcohol)/fumed silica (QPVA/FS) was prepared via a quaternization process and solution casting method. The physico-chemical properties of the QPVA/FS membrane were investigated. Its high ionic conductivity was found to depend greatly on the concentration of fumed silica in the QPVA matrix. A maximum conductivity of 3.50 × 10−2 S/cm was obtained for QPVA/5%FS at 60 °C when it was doped with 6 M KOH. The permeabilities of methanol and ethanol were reduced with increasing fumed silica content. Cell voltage and peak power density were analyzed as functions of fumed silica concentration, temperature, methanol and ethanol concentrations. A maximum power density of 96.8 mW/cm² was achieved with QPVA/5%FS electrolyte using 2 M methanol + 6 M KOH as fuel at 80 °C. A peak power density of 79 mW/cm² was obtained using the QPVA/5%FS electrolyte with 3 M ethanol + 5 M KOH as fuel. The resulting peak power densities are higher than the... [more]
63. LAPSE:2018.0394
Aspen Plus Simulation of Biomass-Gas-and-Nuclear-To-Liquids (BGNTL) Processes (Using CuCl Route)
August 7, 2018 (v1)
Subject: Process Design
Keywords: Aspen Plus, Biomass, Copper-Chloride, Dimethyl Ether, Fischer-Tropsch Synthesis, Methane Reforming, Methanol, Modelling, Natural Gas, Nuclear
These are Aspen Plus simulation files for a Biomass-Gas-and-Nuclear-To-Liquids chemical plant (a conceptional design), which uses the Copper-Chloride route for hydrogen production. This is a part of a larger work (see linked LAPSE record for pre-print and associated publication in Canadian J Chem Eng). Process sections and major units in this simulation include: Gasification, Integrated-Gasification-Methane-Reforming, Pre-Reforming, Water Gas Shift, Autothermal Reforming, Syngas Blending and Upgrading, Solid Oxide Fuel Cell power islands, Fischer-Tropsch Synthesis, Methanol Synthesis, Dimethyl Ether Synthesis, Heat Recovery and Steam Generation, CO2 Compression for Sequestration, Cooling Towers, and various auxiliary units for heat and pressure management. See the linked work for a detailed description of the model.
64. LAPSE:2018.0128
The Optimal Design of a Distillation System for the Flexible Polygeneration of Dimethyl Ether and Methanol Under Uncertainty
June 12, 2018 (v1)
Subject: Process Design
Keywords: Design Under Uncertainty, Dimethyl Ether, Distillation, Methanol, Optimization, Polygeneration
Two process designs for the separation section of a flexible dimethyl ether and methanol polygeneration plant are presented, as well as an optimization method which can determine the optimal design under market uncertainty quickly and to global optimality without loss of model fidelity. The polygeneration plant produces a product mixture that is either mostly dimethyl ether or mostly methanol depending on market conditions by using a classic two-stage dimethyl ether production catalytic reaction route in which the second stage is bypassed when the market demand is such that methanol production is more favorable than dimethyl ether. The downstream distillation sequence is designed to purify the products to desired specifications despite the wide variability in feed condition that corresponds to the upstream reaction system operating either in DME-rich or methanol-rich mode. Because the optimal design depends on uncertain market conditions (realized as the percentage of the time in which... [more]



