Browse
Records Added in August 2020
Records added in August 2020
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 23 to 47 of 47. [First] Page: 1 2 Last
Thermal Radiations and Mass Transfer Analysis of the Three-Dimensional Magnetite Carreau Fluid Flow Past a Horizontal Surface of Paraboloid of Revolution
T. Abdeljawad, Asad Ullah, Hussam Alrabaiah, Ikramullah, Muhammad Ayaz, Waris Khan, Ilyas Khan, Hidayat Ullah Khan
August 29, 2020 (v1)
Keywords: Brownian motion, chemical reaction, homotopy analysis method (HAM), magnetic field, magnetite–carreau fluid, mass transfer, paraboloid of revolution, thermal radiations
The dynamics of the 3-dimensional flow of magnetized Carreau fluid past a paraboloid surface of revolution is studied through thermal radiation and mass transfer analysis. The impacts of Brownian motion and chemical reaction rate are considered on the flow dynamics. The system of nonlinear PDEs are converted to coupled ODEs by employing suitable transformation relations. The developed ODEs are solved by applying the standard procedure of homotopy analysis method (HAM). The impacts of various interesting parameters on the state variables of the Carreau fluid (velocity components, temperature, concentration, and shear stress) are explained through various graphs and tables. It is found that the horizontal velocity components augment with the rising magnetic parameter and Grashof number values. The fluid temperature augments with the higher values of the pertinent parameters except Prandtl number. The Nusselet number and fluid concentration enhance with the augmenting Brownian motion para... [more]
Optimization of Synthesizing Upright ZnO Rod Arrays with Large Diameters through Response Surface Methodology
Xiaofei Sheng, Yajuan Cheng, Yingming Yao, Zhe Zhao
August 29, 2020 (v1)
Subject: Materials
Keywords: response surface methodology, tri-sodium citrate, ZnO rod arrays
The deposition parameters involved in chemical bath deposition were optimized by a response surface methodology to synthesize upright ZnO rod arrays with large diameters. The effects of the factors on the preferential orientation, aspect ratio, and diameter were determined systematically and efficiently. The results demonstrated that an increased concentration, elevated reaction temperature, prolonged reaction time, and reduced molar ratio of Zn2+ to tri-sodium citrate could increase the diameter and promote the preferential oriented growth along the [002] direction. With the optimized parameters, the ZnO rods were grown almost perfectly vertically with the texture coefficient of 99.62. In the meanwhile, the largest diameter could reach 1.77 μm. The obtained rods were merged together on this condition, and a dense ZnO thin film was formed.
Isolation, Identification, and Optimization of γ-Aminobutyric Acid (GABA)-Producing Bacillus cereus Strain KBC from a Commercial Soy Sauce moromi in Submerged-Liquid Fermentation
Wan Abd Al Qadr Imad Wan-Mohtar, Mohamad Nor Azzimi Sohedein, Mohamad Faizal Ibrahim, Safuan Ab Kadir, Ooi Poh Suan, Alan Wong Weng Loen, Soumaya Sassi, Zul Ilham
August 29, 2020 (v1)
Keywords: fermented food, functional food, GABA, non-protein amino acid, soy sauce fermentation
A new high γ-aminobutyric acid (GABA) producing strain of Bacillus cereus was successfully isolated from soy sauce moromi. This B. cereus strain named KBC shared similar morphological characteristics (Gram-positive, rod-shaped) with the reference B. cereus. 16S rRNA sequence of B. cereus KBC was found to be 99% similar with B. cereus strain OPWW1 under phylogenetic tree analysis. B. cereus KBC cultivated in unoptimized conditions using De Man, Rogosa, Sharpe (MRS) broth was capable of producing 523.74 mg L−1 of GABA within five days of the cultivation period. By using response surface methodology (RSM), pH level, monosodium glutamate (MSG) concentration and temperature were optimized for a high concentration of GABA production. The pH level significantly influenced the GABA production by B. cereus KBC with p-value = 0.0023. GABA production by B. cereus KBC under the optimized condition of pH 7, MSG concentration of 5 g L−1 and temperature of 40 °C resulted in GABA production of 3393.02... [more]
Efficacies of Carbon-Based Adsorbents for Carbon Dioxide Capture
Tasmina Khandaker, Muhammad Sarwar Hossain, Palash Kumar Dhar, Md. Saifur Rahman, Md. Ashraf Hossain, Mohammad Boshir Ahmed
August 29, 2020 (v1)
Subject: Materials
Keywords: activated carbon, Adsorption, Carbon Dioxide Capture, carbon nanomaterials, surface area
Carbon dioxide (CO2), a major greenhouse gas, capture has recently become a crucial technological solution to reduce atmospheric emissions from fossil fuel burning. Thereafter, many efforts have been put forwarded to reduce the burden on climate change by capturing and separating CO2, especially from larger power plants and from the air through the utilization of different technologies (e.g., membrane, absorption, microbial, cryogenic, chemical looping, and so on). Those technologies have often suffered from high operating costs and huge energy consumption. On the right side, physical process, such as adsorption, is a cost-effective process, which has been widely used to adsorb different contaminants, including CO2. Henceforth, this review covered the overall efficacies of CO2 adsorption from air at 196 K to 343 K and different pressures by the carbon-based materials (CBMs). Subsequently, we also addressed the associated challenges and future opportunities for CBMs. According to this r... [more]
Techno-economic Assessment of Optimised Vacuum Swing Adsorption for Post-Combustion CO2 capture from Steam-Methane Reformer Flue Gas
Gokul Sai Subraveti, Simon Roussanaly, Rahul Anantharaman, Luca Riboldi, Arvind Rajendran
August 18, 2020 (v1)
Keywords: Carbon dioxide capture and storage, Metal Organic Framework, optimisation, Steam-methane reforming, Technoeconomic Analysis, vacuum swing adsorption
This study focuses on the techno-economic assessment integrated with detailed optimisation of a four step vacuum swing adsorption (VSA) process for post-combustion CO2 capture and storage (CCS) from steam-methane reformer dried flue gas containing 20 mol% CO2. The comprehensive techno-economic optimisation model developed herein takes into account VSA process model, peripheral component models, vacuum pump performance, scale-up, process scheduling and a thorough cost model. Three adsorbents, namely, Zeolite 13X and two metal-organic frameworks, UTSA-16 and IISERP MOF2 are optimised to minimise the CO2 capture cost. Monoethanolamine (MEA)-based absorption technology serves as a baseline case to assess and compare optimal techno-economic performances of VSA technology for three adsorbents. The results show that the four step VSA process with IISERP MOF2 outperforms other two adsorbents with a lowest CO2 capture cost (including flue gas pre-treatment) of 33.6 € per tonne of CO2 avoided an... [more]
On the application of shooting method for determining semicontinuous distillation limit cycles
Thomas Adams II, Pranav Bhaswanth Madabhushi
August 17, 2020 (v1)
Keywords: Hybrid Dynamical System, Limit Cycle, Optimization, Process Design, Semicontinuous Distillation
Semicontinuous distillation is a new separation technology for distilling multicomponent mixtures.
This process was designed using design methodologies with heuristic components that evolved
over twenty years. However, the fundamental philosophy of these design methodologies, which
involves guessing, checking and then using a black-box optimization procedure to find the values
of the design variables to meet some performance criteria, has not changed. Mainly, to address the
problem of having a heuristic simulation termination criterion in the black-box optimization phase,
the single shooting method for semicontinuous distillation design was proposed in this study. We
envision that this is a first step in the transformation of the semicontinuous distillation design
process for obtaining optimal designs. We demonstrate the application of this method using two
case studies, which involve the separation of hexane, heptane and octane.
Improved Dye Removal Ability of Modified Rice Husk with Effluent from Alkaline Scouring Based on the Circular Economy Concept
Nina Mladenovic, Petre Makreski, Anita Tarbuk, Katia Grgic, Blazo Boev, Dejan Mirakovski, Emilija Toshikj, Vesna Dimova, Dejan Dimitrovski, Igor Jordanov
August 5, 2020 (v1)
Keywords: activation of rice husk, biosorbent, closed-loop process, colored effluent purifying, low-cost treatment, waste
To improve the ability of the rice husk to purify colored wastewater, effluent from the alkaline scouring of cotton yarn was used immediately after the scouring (without cooling and additionally added chemicals) in order to remove the non-cellulosic silicon-lignin shield from the rice husk’s surface. This rice husk, with 93.8 mg/g adsorption capacity, behaves similarly as the rice husk treated with an optimized alkaline scouring recipe consisting of 20 g/L NaOH, 2 mL/L Cotoblanc HTD-N and 1 mL/L Kemonecer NI at 70 °C for 30 min with an adsorption capacity of 88.9 mg/g of direct Congo red dye. Treating one form of waste (rice husk) with another (effluent from the alkaline scouring of cellulosic plant fibers), in an effort to produce a material able to purify colored effluent, is an elegant environment-friendly concept based on the circular economy strategy. This will result in a closed-loop energy-efficient process of the pre-treatment of cotton (alkaline scouring), modification of rice... [more]
Real-Time Optimization of Pulp Mill Operations with Wood Moisture Content Variation
Wipawadee Nuengwang, Thongchai R. Srinophakun, Matthew J. Realff
August 5, 2020 (v1)
Keywords: moisture content of wood variation, pulp mill modeling, real-time optimization, rolling horizon approach
In tropical countries, such as Thailand, the variation of tree moisture content can be significant based on seasonal variations in rainfall. Pulp mill operation optimization accounting for wood moisture variation was used to determine optimal operation conditions and minimize production cost. The optimization models were built using empirical modeling techniques with simulated data from the IDEAS software package. Three case studies were performed. First, a base case of nominal annual operation at a fixed production rate was used to calculate production cost that varies with wood moisture content. The second case is annual optimization where production was allowed to vary monthly over an annual cycle to minimize production cost. For the third case, real-time optimization (RTO) was used to determine optimal production rate with the wood moisture content varying every 3 days. The rolling horizon approach was used to schedule production to keep inventory levels within bounds and with a pe... [more]
Research on the Pressure Dropin Horizontal Pneumatic Conveying for Large Coal Particles
Daolong Yang, Yanxiang Wang, Zhengwei Hu
August 5, 2020 (v1)
Subject: Other
Keywords: DPM, Euler–Lagrange approach, large coal particles, pneumatic conveying, pressure drop
As a type of airtight conveying mode, pneumatic conveying has the advantages of environmental friendliness and conveying without dust overflow. The application of the pneumatic conveying system in the field of coal particle conveying can avoid direct contact between coal particles and the atmosphere, which helps to reduce the concentration of air dust and improve environmental quality in coal production and coal consumption enterprises. In order to predict pressure drop in the pipe during the horizontal pneumatic conveying of large coal particles, the Lagrangian coupling method and DPM (discrete particle model) simulation model was used in this paper. Based on the comparison of the experimental results, the feasibility of the simulation was verified and the pressure drop in the pipe was simulated. The simulation results show that when the flow velocity is small, the simulation results of the DPM model are quite different from that of the experiment. When the flow velocity is large, the... [more]
Progressive System: A Deep-Learning Framework for Real-Time Data in Industrial Production
Yifeng Liu, Wei Zhang, Wenhao Du
August 5, 2020 (v1)
Keywords: deep-learning, few-shot learning, image classification, real-time systems
Deep learning based on a large number of high-quality data plays an important role in many industries. However, deep learning is hard to directly embed in the real-time system, because the data accumulation of the system depends on real-time acquisitions. However, the analysis tasks of such systems need to be carried out in real time, which makes it impossible to complete the analysis tasks by accumulating data for a long time. In order to solve the problems of high-quality data accumulation, high timeliness of the data analysis, and difficulty in embedding deep-learning algorithms directly in real-time systems, this paper proposes a new progressive deep-learning framework and conducts experiments on image recognition. The experimental results show that the proposed framework is effective and performs well and can reach a conclusion similar to the deep-learning framework based on large-scale data.
A Novel Approach in Crude Enzyme Laccase Production and Application in Emerging Contaminant Bioremediation
Luong N. Nguyen, Minh T. Vu, Md Abu Hasan Johir, Nirenkumar Pathak, Jakub Zdarta, Teofil Jesionowski, Galilee U. Semblante, Faisal I. Hai, Hong Khanh Dieu Nguyen, Long D. Nghiem
August 5, 2020 (v1)
Keywords: crude enzyme laccase, emerging contaminants, enzymatic degradation, enzymatic membrane reactor, membrane filtration, white-rot fungi
Laccase enzyme from white-rot fungi is a potential biocatalyst for the oxidation of emerging contaminants (ECs), such as pesticides, pharmaceuticals and steroid hormones. This study aims to develop a three-step platform to treat ECs: (i) enzyme production, (ii) enzyme concentration and (iii) enzyme application. In the first step, solid culture and liquid culture were compared. The solid culture produced significantly more laccase than the liquid culture (447 vs. 74 µM/min after eight days), demonstrating that white rot fungi thrived on a solid medium. In the second step, the enzyme was concentrated 6.6 times using an ultrafiltration (UF) process, resulting in laccase activity of 2980 µM/min. No enzymatic loss due to filtration and membrane adsorption was observed, suggesting the feasibility of the UF membrane for enzyme concentration. In the third step, concentrated crude enzyme was applied in an enzymatic membrane reactor (EMR) to remove a diverse set of ECs (31 compounds in six group... [more]
Selective Photocatalytic Oxidation of 5-HMF in Water over Electrochemically Synthesized TiO2 Nanoparticles
Anna Ulyankina, Sergey Mitchenko, Nina Smirnova
August 5, 2020 (v1)
Keywords: 2,5-diformylfuran, 5-hydroxymethylfurfural, electrochemical synthesis, pulse alternating current, TiO2
TiO2 nanoparticles were prepared via an electrochemical method using pulse alternating current and applied in the photocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). Its physicochemical properties were characterized by SEM, HRTEM, XRD, and BET methods. The effect of scavenger and UVA light intensity was studied. The results revealed that electrochemically synthesized TiO2 nanoparticles exhibit higher DFF selectivity in the presence of methanol (up to 33%) compared with commercial samples.
Effect of the Chemical Composition on the Structural State and Mechanical Properties of Complex Microalloyed Steels of the Ferritic Class
Alexander Zaitsev, Anton Koldaev, Nataliya Arutyunyan, Sergey Dunaev, Dmitrii D’yakonov
August 5, 2020 (v1)
Subject: Materials
Keywords: hot rolling, low-carbon steels of the ferritic class, nanoscale phase precipitates, steel composition, strength characteristics, structure
The most promising direction for obtaining a unique combination of difficult-to-combine properties of low-carbon steels is the formation of a dispersed ferrite microstructure and a volumetric system of nanoscale phase precipitates. This study was aimed at establishing the special features of the composition influence on the characteristics of the microstructure, phase precipitates, and mechanical properties of hot-rolled steels of the ferritic class. It was carried out by transmission electron microscopy and testing the mechanical properties of metal using 8 laboratory melts of low-carbon steels microalloyed by V, Nb, Ti, and Mo in various combinations. It was found that block ferrite prevails in the structure of steel cooled after hot rolling at a rate of 10−15 °C/s. Lowering of the microalloying components content leads to a decrease in the block ferrite fraction to 20−35% and the dominance of polygonal ferrite. The presence of nanoscale carbide (carbonitride) precipitates of austeni... [more]
Effective Heavy Metals Removal from Water Using Nanomaterials: A Review
Mohamed A. Tahoon, Saifeldin M. Siddeeg, Norah Salem Alsaiari, Wissem Mnif, Faouzi Ben Rebah
August 5, 2020 (v1)
Subject: Materials
Keywords: functionalization, heavy metals, nanomaterials, water treatment
The discharge of toxic heavy metals including zinc (Zn), nickel (Ni), lead (Pb), copper (Cu), chromium (Cr), and cadmium (Cd) in water above the permissible limits causes high threat to the surrounding environment. Because of their toxicity, heavy metals greatly affect the human health and the environment. Recently, better remediation techniques were offered using the nanotechnology and nanomaterials. The attentions were directed toward cost-effective and new fabricated nanomaterials for the application in water/wastewater remediation, such as zeolite, carbonaceous, polymer based, chitosan, ferrite, magnetic, metal oxide, bimetallic, metallic, etc. This review focused on the synthesis and capacity of various nanoadsorbent materials for the elimination of different toxic ions, with discussion of the effect of their functionalization on the adsorption capacity and separation process. Additionally, the effect of various experimental physicochemical factors on heavy metals adsorption, such... [more]
Isomerization of Glucose to Fructose in Hydrolysates from Lignocellulosic Biomass Using Hydrotalcite
David Steinbach, Andreas Klier, Andrea Kruse, Jörg Sauer, Stefan Wild, Marina Zanker
August 5, 2020 (v1)
Keywords: aldose-ketose isomerization, bioeconomy, biorefinery, fructose, glucose, hydrolyzate, hydrotalcite, hydroxymethylfurfural, lignocellulose, pretreatment
The isomerization of glucose-containing hydrolysates to fructose is a key step in the process from lignocellulosic biomass to the platform chemical hydroxymethylfurfural. We investigated the isomerization reaction of glucose to fructose in water catalyzed by hydrotalcite. Catalyst characterization was performed via IR, XRD, and SEM. Firstly, glucose solutions at pH-neutral conditions were converted under variation of the temperature, residence time, and catalyst loading, whereby a maximum of 25 wt.% fructose yield was obtained at a 38 wt.% glucose conversion. Secondly, isomerization was performed at pH = 2 using glucose solutions as well as glucose-containing hydrolysates from lignocellulosic biomass. Under acidic conditions, the hydrotalcite loses its activity for isomerization. Consequently, it is unavoidable to neutralize the acidic hydrolysate before the isomerization step with an inexpensive base. As a neutralizing agent NaOH is preferred over Ba(OH)2, since higher fructose yields... [more]
Key Challenges in Designing CHO Chassis Platforms
Anis Hamdi, Diana Széliová, David E. Ruckerbauer, Isabel Rocha, Nicole Borth, Jürgen Zanghellini
August 5, 2020 (v1)
Subject: Biosystems
Keywords: chassis cell, Chinese Hamster Ovary (CHO), modularity, recombinant proteins, systems metabolic engineering
Following the success of and the high demand for recombinant protein-based therapeutics during the last 25 years, the pharmaceutical industry has invested significantly in the development of novel treatments based on biologics. Mammalian cells are the major production systems for these complex biopharmaceuticals, with Chinese hamster ovary (CHO) cell lines as the most important players. Over the years, various engineering strategies and modeling approaches have been used to improve microbial production platforms, such as bacteria and yeasts, as well as to create pre-optimized chassis host strains. However, the complexity of mammalian cells curtailed the optimization of these host cells by metabolic engineering. Most of the improvements of titer and productivity were achieved by media optimization and large-scale screening of producer clones. The advances made in recent years now open the door to again consider the potential application of systems biology approaches and metabolic engine... [more]
Molecular Interpretation of Pharmaceuticals’ Adsorption on Carbon Nanomaterials: Theory Meets Experiments
Daniele Veclani, Marilena Tolazzi, Andrea Melchior
August 5, 2020 (v1)
Keywords: ab initio calculations, Adsorption, carbon nanomaterials, DFT, drugs, isotherms, molecular dynamics, water treatment
The ability of carbon-based nanomaterials (CNM) to interact with a variety of pharmaceutical drugs can be exploited in many applications. In particular, they have been studied both as carriers for in vivo drug delivery and as sorbents for the treatment of water polluted by pharmaceuticals. In recent years, the large number of experimental studies was also assisted by computational work as a tool to provide understanding at molecular level of structural and thermodynamic aspects of adsorption processes. Quantum mechanical methods, especially based on density functional theory (DFT) and classical molecular dynamics (MD) simulations were mainly applied to study adsorption/release of various drugs. This review aims to compare results obtained by theory and experiments, focusing on the adsorption of three classes of compounds: (i) simple organic model molecules; (ii) antimicrobials; (iii) cytostatics. Generally, a good agreement between experimental data (e.g. energies of adsorption, spectr... [more]
A Study of the Movement, Structural Stability, and Electrical Performance for Harvesting Ocean Kinetic Energy Based on IPMC Material
Vinh Nguyen Duy, Hyung-Man Kim
August 5, 2020 (v1)
Keywords: Computational Fluid Dynamics, electrochemistry, energy harvesting, engineering, ocean kinetic energy, physical sciences, Renewable and Sustainable Energy
The movement of water in the oceans generates a vast store of kinetic energy, which has led to the development of a wide variety of offshore energy harvesters all over the world. In our energy harvester, we used ionic polymer-metal composites (IPMCs) to convert the ocean energy into electricity. This paper presents a simulated model of an IPMC-based electrochemical kinetic energy harvesting system installed in the ocean and produced using the computational fluid dynamics (CFD) method. The simulation processes focused on the movement and structural stability of the system design in the ocean for the protection of the IPMC module against possible damage, which would directly affect the power output. Furthermore, the experimental tests under real marine conditions were also studied to analyze the electrical harvesting performance of the IPMC system. These results showed that the use of IPMC materials has many advantages as they are soft and durable; as a result, they can respond faster to... [more]
Mechanism, Thermodynamics and Kinetics of Rutile Leaching Process by Sulfuric Acid Reactions
Anastasiia V. Dubenko, Mykola V. Nikolenko, Eugene V. Aksenenko, Andrii Kostyniuk, Blaž Likozar
August 5, 2020 (v1)
Keywords: altered ilmenite, chemical kinetics, equilibrium Gibbs free energy, fluoride ions, homogeneous–heterogeneous catalysis, leaching, rutile, sulfuric acid, thermodynamic parameter evaluation, titanium dioxide
Rutile decomposition by sulfuric acid, including the formation of two salts, Ti(SO4)2/TiOSO4, is thermodynamically modelled. It is shown that TiO2 can spontaneously dissolve in H2SO4 solutions. However, titania is considered as an inert (ballast) phase component of titanium-containing raw materials due to the decelerated separate nature of such chemical transformations. It is concluded that the hampered related kinetics of dissolution can be attributed to the lability of Ti(IV) cations/the specific engineered features of the hierarchical crystalline structure. It is suggested that the breaking of Ti−O−Ti bonds without additional mechanical strains in crystal lattice geometry becomes more advantageous when smaller negative anions/fluoride ions can be used. The analysis of sulfate-fluoride extraction leaching of titanium confirmed that a decrease in the Gibbs energy in the presence of F occurs. It is indicated by kinetic research studies that the addition of corrosive sodium reagent (NaF... [more]
Active Control Parameters Monitoring for Freight Trains, Using Wireless Sensor Network Platform and Internet of Things
Adrian Brezulianu, Cristian Aghion, Marius Hagan, Oana Geman, Iuliana Chiuchisan, Alexandra-Ligia Balan, Doru-Gabriel Balan, Valentina Emilia Balas
August 5, 2020 (v1)
Keywords: connected train, Internet of Things (IoT), monitoring web server application, railway transport management, sensor networks
Operating in a dynamic and competitive global market, railway companies have realized many years ago that better management of their logistical operations will enhance their strategic positions on the market. The financial component of daily operations is of utmost importance these days and many companies concluded that maximizing the profit relies on the integration of logistical activities with better income management. This paper presents a system consisting of three components: Ferodata BOX, Ferodata MOBILE, and Ferodata SYS, used to transmit to a web-server the status and operating information of an electric or diesel train. Train information includes data from locomotives, wagons, train driver, route, direction, fuel or electric consumption, speed, etc. All this information is processed in real-time and can be viewed in the web-server application. Additionally, the web-server application could manage and report details that are coming from the wagons, such as valuable information... [more]
Measuring Performance Metrics of Machine Learning Algorithms for Detecting and Classifying Transposable Elements
Simon Orozco-Arias, Johan S. Piña, Reinel Tabares-Soto, Luis F. Castillo-Ossa, Romain Guyot, Gustavo Isaza
August 5, 2020 (v1)
Keywords: classification, deep learning, detection, Machine Learning, metrics, transposable elements
Because of the promising results obtained by machine learning (ML) approaches in several fields, every day is more common, the utilization of ML to solve problems in bioinformatics. In genomics, a current issue is to detect and classify transposable elements (TEs) because of the tedious tasks involved in bioinformatics methods. Thus, ML was recently evaluated for TE datasets, demonstrating better results than bioinformatics applications. A crucial step for ML approaches is the selection of metrics that measure the realistic performance of algorithms. Each metric has specific characteristics and measures properties that may be different from the predicted results. Although the most commonly used way to compare measures is by using empirical analysis, a non-result-based methodology has been proposed, called measure invariance properties. These properties are calculated on the basis of whether a given measure changes its value under certain modifications in the confusion matrix, giving co... [more]
A Reliable Automated Sampling System for On-Line and Real-Time Monitoring of CHO Cultures
Alexandra Hofer, Paul Kroll, Matthias Barmettler, Christoph Herwig
August 5, 2020 (v1)
Keywords: amino acids, automated sampling, bioprocess, CHO, process analytical technology, vitamins
Timely monitoring and control of critical process parameters and product attributes are still the basic tasks in bioprocess development. The current trend of automation and digitization in bioprocess technology targets an improvement of these tasks by reducing human error and increasing through-put. The gaps in such automation procedures are still the sampling procedure, sample preparation, sample transfer to analyzers, and the alignment of process and sample data. In this study, an automated sampling system and the respective data management software were evaluated for system performance; applicability with HPLC for measurement of vitamins, product and amino acids; and applicability with a biochemical analyzer. The focus was especially directed towards the adaptation and assessment of an appropriate amino acid method, as these substances are critical in cell culture processes. Application of automated sampling in a CHO fed-batch revealed its potential with regard to data evaluation. T... [more]
The Effect of Temperature on the Biosorption of Dyes from Aqueous Solutions
Lech Smoczyński, Bogusław Pierożyński, Tomasz Mikołajczyk
August 5, 2020 (v1)
Subject: Other
Keywords: biosorption, dye, temperature, Wastewater
This work is a review of scientific papers on the influence of temperature (T) on the biosorption of various dyes from aqueous solutions and wastewaters. The dyeing process of textiles is usually carried out at high temperatures, and therefore, the wastewater generated there when entering the treatment plant may still be hot. Hence, depending on the climatic conditions of a given region, the biosorption method used for their purification may occur at various temperatures. Most of the papers clearly stated the positive influence of T on biosorption, generally indicating the chemical nature of this process. At the same time, substantial number of authors confirmed the positive effect of T on the biosorption with an initial T-rise from approximately 20 °C to about 30−40 °C range; conversely, at higher temperatures, they indicated a decrease in the biosorption efficiency. Additionally, many authors clearly implied the negative impact of T on the biosorption parameters. They generally envis... [more]
Electro-Discharge Machining of Zr67Cu11Ni10Ti9Be3: An Investigation on Hydroxyapatite Deposition and Surface Roughness
Abdul’Azeez Abdu Aliyu, Ahmad Majdi Abdul-Rani, Saeed Rubaiee, Mohd Danish, Michael Bryant, Sri Hastuty, Muhammad Al’Hapis Razak, Sadaqat Ali
August 5, 2020 (v1)
Keywords: coating, deposition rate, elecro-discharge, hydroxyapatite, machining, metallic glass, Optimization, RSM, surface roughness
This study attempts to simultaneously machine and synthesize a biomimetic nanoporous hydroxyapatite coating on the Zr67Cu11Ni10Ti9Be3 bulk metallic glass (BMG) surface. The aim is to investigate and optimize the hydroxyapatite deposition rate and the surface roughness during the electro-discharge coating of Zr67Cu11Ni10Ti9Be3 BMG. Scanning Electron Microscopy (SEM), X-ray powder Diffraction (XRD) and Energy-dispersive X-ray Spectroscopy (EDS) were employed to characterize and analyze the results. Response Surface Methodology using D-optimum custom design approach was utilized to generate the models and optimize the input parameters. A globule nanostructured and nanoporous coating of about 25.2 µm thick, containing mainly Ca, O, and K were ascertained. Further XRD analysis confirmed the deposition of biocompatible oxides (HA, CaZrO3, and ZrO2) and hard ZrC coating on the Zr67Cu11Ni10Ti9Be3 BMG surface. A significant improvement in cell viability was observed in the HA electro-discharge... [more]
Quality 4.0 in Action: Smart Hybrid Fault Diagnosis System in Plaster Production
Javaneh Ramezani, Javad Jassbi
August 5, 2020 (v1)
Keywords: construction industry, control chart pattern, decision support systems, discriminant analysis, disruption management, disruptions, expert systems, failure mode and effects analysis (FMEA), fault diagnosis, Industry 4.0, neural networks, plaster production, statistical process control
Industry 4.0 (I4.0) represents the Fourth Industrial Revolution in manufacturing, expressing the digital transformation of industrial companies employing emerging technologies. Factories of the future will enjoy hybrid solutions, while quality is the heart of all manufacturing systems regardless of the type of production and products. Quality 4.0 is a branch of I4.0 with the aim of boosting quality by employing smart solutions and intelligent algorithms. There are many conceptual frameworks and models, while the main challenge is to have the experience of Quality 4.0 in action at the workshop level. In this paper, a hybrid model based on a neural network (NN) and expert system (ES) is proposed for dealing with control chart patterns (CCPs). The idea is to have, instead of a passive descriptive model, a smart predictive model to recommend corrective actions. A construction plaster-producing company was used to present and evaluate the advantages of this novel approach, while the result... [more]
Showing records 23 to 47 of 47. [First] Page: 1 2 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December