Records with Keyword: Fischer-Tropsch Synthesis
Combining Petroleum Coke and Natural Gas for Efficient Liquid Fuels Production
Ikenna J Okeke, Thomas A Adams II
August 28, 2018 (v1)
This work explores the technical feasibility and economic profitability of converting petroleum coke (petcoke) and natural gas to liquid fuels via Fischer-Tropsch synthesis. Different petcoke conversion strategies were examined to determine the conversion pathway which can be competitive with current market prices with little or no adverse environmental impacts. Three main design approaches were considered: petcoke gasification only, combined petcoke gasification and natural gas reforming through traditional processing steps, and combined petcoke gasification and natural gas reforming by directly integrating the gasifier’s radiant cooler with the gas reformer. The designs investigated included scenarios with and without carbon capture and sequestration, and with and without CO2 emission tax penalties. The performance metrics considered included net present value, life cycle greenhouse gas emissions, and the cost of CO2 avoided. The design configuration that integrated natural gas refor... [more]
Aspen Plus Simulation of Biomass-Gas-and-Nuclear-To-Liquids (BGNTL) Processes (Using CuCl Route)
James Alexander Scott, Thomas Alan Adams II
August 7, 2018 (v1)
These are Aspen Plus simulation files for a Biomass-Gas-and-Nuclear-To-Liquids chemical plant (a conceptional design), which uses the Copper-Chloride route for hydrogen production. This is a part of a larger work (see linked LAPSE record for pre-print and associated publication in Canadian J Chem Eng). Process sections and major units in this simulation include: Gasification, Integrated-Gasification-Methane-Reforming, Pre-Reforming, Water Gas Shift, Autothermal Reforming, Syngas Blending and Upgrading, Solid Oxide Fuel Cell power islands, Fischer-Tropsch Synthesis, Methanol Synthesis, Dimethyl Ether Synthesis, Heat Recovery and Steam Generation, CO2 Compression for Sequestration, Cooling Towers, and various auxiliary units for heat and pressure management. See the linked work for a detailed description of the model.
Petroleum coke and Natural gas-To-Liquids Aspen Plus Simulation
Ikenna J Okeke, Thomas A Adams II
July 19, 2018 (v1)
Keywords: Aspen Plus, Fischer-Tropsch Synthesis, Integrated Reforming, Petroleum Coke
Six Aspen Plus simulation files for the conversion of petroleum coke and/or natural gas to liquid fuels (synthetic gasoline and diesel) are presented. The base simulation files were designed with carbon capture and sequestration (CCS) technology with the corresponding plant without CCS.

The processes may include various technologies such as petcoke gasification, integrated gasification and autothermal natural gas reforming, gas cleaning, water gas shift reaction, MDEA based carbon capture, Claus process, FT synthesis, and other processing steps.

The six processes are: PSG_CCS (petcoke standalone gasification with CCS), PSG_No_CCS (petcoke standalone gasification without CCS), PG-INGR_CCS (petcoke gasification integrated natural gas reformer with CCS), PG-INGR_No_CCS (petcoke gasification integrated natural gas reformer without CCS), PG-ENGR_CCS (petcoke gasification external natural gas reformer with CCS), PG-ENGR_No_CCS (petcoke gasification external natural gas reformer with... [more]
Biomass-Gas-and-Nuclear-To-Liquids Aspen Plus Simulations
Leila Hoseinzade, Thomas A. Adams II
June 12, 2018 (v1)
Aspen Plus simulation for eight different chemical processes. Each simulation corresponds to a process which convert biomass, natural gas, and in some cases, nuclear energy, into either dimethyl ether (DME) or Fischer-Tropsch liquids (synthetic gasoline and diesel). Some processes contain carbon capture and sequestration (CCS) steps.

The processes may include various technologies such as biomass gasification, steam methane reforming, integrated gasification and natural gas reforming, integrated high temperature gas-cooled reactors and natural gas reforming, water gas shift reaction, FT synthesis, DME synthesis, MEA or MDEA based carbon capture, gas combustion turbines, gas cleaning, and other processing steps. Nuclear energy, when used, is integrated into the system via a high temperature helium coolant as an energy carrier from certain kinds of Gen IV nuclear reactors.

The eight processes are: BGNTL-FT (biomass-gas-nuclear-to-liquids with FT synthesis), BGNTL-FT-CCS (the same w... [more]
[Show All Keywords]