Browse
Records Added in May 2021
Records added in May 2021
Change month: January | February | March | April | May | June | July | August | September | October | November | December
111. LAPSE:2021.0378
Sequential Photodamage Driven by Chaotic Systems in NiO Thin Films and Fluorescent Human Cells
May 17, 2021 (v1)
Subject: Biosystems
Keywords: human cells, laser ablation, NiO, optical Kerr effect, photodamage, semiconductor processing, thin films, two-wave mixing
A laser ablation process assisted by the feedback of a sensor with chaotic electronic modulation is reported. A synchronous bistable logic circuit was analyzed for switching optical signals in a laser-processing technique. The output of a T-type flip-flop configuration was employed in the photodamage of NiO films. Multiphotonic effects involved in the ablation threshold were evaluated by a vectorial two-wave mixing method. A photoinduced thermal phenomenon was identified as the main physical mechanism responsible for the nonlinearity of index under nanosecond irradiation at 532 nm wavelength. Comparative experiments for destroying highly transparent human cells were carried out. Potential applications for developing hierarchical functions yielding laser-induced controlled explosions with immediate applications for biomedical photothermal processes can be contemplated.
112. LAPSE:2021.0377
A Review of Zein as a Potential Biopolymer for Tissue Engineering and Nanotechnological Applications
May 17, 2021 (v1)
Subject: Biosystems
Keywords: biopolymer, nanotechnology, scaffold, tissue engineering, zein
Tissue engineering (TE) is one of the most challenging fields of research since it provides current alternative protocols and materials for the regeneration of damaged tissue. The success of TE has been mainly related to the right selection of nano-sized biocompatible materials for the development of matrixes, which can display excellent anatomical structure, functionality, mechanical properties, and histocompatibility. Today, the research community has paid particular attention to zein as a potential biomaterial for TE applications and nanotechnological approaches. Considering the properties of zein and the advances in the field, there is a need to reviewing the current state of the art of using this natural origin material for TE and nanotechnological applications. Therefore, the goal of this review paper is to elucidate the latest (over the last five years) applications and development works in the field, including TE, encapsulations of drugs, food, pesticides and bandaging for exte... [more]
113. LAPSE:2021.0376
Gasification Applicability of Korean Municipal Waste Derived Solid Fuel: A Comparative Study
May 17, 2021 (v1)
Subject: Reaction Engineering
Gaining energy independence by utilizing new and renewable energy resources has become imperative for Korea. Energy recovery from Korean municipal solid waste (MSW) could be a promising option to resolve the issue, as Korean MSW is highly recyclable due to its systematic separation, collection and volume-based waste disposal system. In this study, gasification experiments were conducted on Korean municipal waste-derived solid fuel (SRF) using a fixed bed reactor by varying the equivalence ratio (ER) to assess the viability of syngas production. Experiments were also conducted on coal and biomass under similar conditions to compare the experimental results, as the gasification applicability of coal and biomass are long-established. Experimental results showed that Korean SRF could be used to recover energy in form of syngas. In particular, 50.94% cold gas efficiency and 54.66% carbon conversion ratio with a lower heating value of 12.57 MJ/Nm3 can be achieved by gasifying the SRF at 0.4... [more]
114. LAPSE:2021.0375
Determination of Dissolved CO2 Concentration in Culture Media: Evaluation of pH Value and Mathematical Data
May 17, 2021 (v1)
Subject: Biosystems
Keywords: Carbon Dioxide, culture media, microorganism, Optimization
Carbon dioxide is the most influential gas in greenhouse gasses and its amount in the atmosphere reached 412 µmol/mol in August 2020, which increased rapidly, by 48%, from preindustrial levels. A brand-new chemical industry, namely organic chemistry and catalysis science, must be developed with carbon dioxide (CO2) as the source of carbon. Nowadays, many techniques are available for controlling and removing carbon dioxide in different chemical processes. Since the utilization of CO2 as feedstock for a chemical commodity is of relevance today, this study will focus on how to increase CO2 solubility in culture media used for growing microbes. In this work, the CO2 solubility in a different medium was investigated. Sodium hydroxide (NaOH) and monoethanolamine (MEA) were added to the culture media (3.0 g/L dipotassium phosphate (K2HPO4), 0.2 g/L magnesium chloride (MgCl2), 0.2 g/L calcium chloride (CaCl2), and 1.0 g/L sodium chloride (NaCl)) for growing microbes in order to observe the dif... [more]
115. LAPSE:2021.0374
Review of Artificial Intelligence Applied in Decision-Making Processes in Agricultural Public Policy
May 17, 2021 (v1)
Subject: Intelligent Systems
Keywords: agriculture, Artificial Intelligence, decision making, policy formulation, public policy
The objective of this article is to review how Artificial Intelligence (AI) tools have helped the process of formulating agricultural public policies in the world. For this, a search process was carried out in the main scientific repositories finding different publications. The findings have shown that, first, the most commonly used AI tools are agent-based models, cellular automata, and genetic algorithms. Secondly, they have been utilized to determine land and water use, and agricultural production. In the end, the large usefulness that AI tools have in the process of formulating agricultural public policies is concluded.
116. LAPSE:2021.0373
A Study on the Tribological Performance of Nanolubricants
May 17, 2021 (v1)
Subject: Materials
Keywords: dispersion stability, lubrication mechanism, nanolubricants, nanoparticles, tribological performance
In recent years, the tribology field has expanded with the advent of nanolubrication. Nanolubricants are the name given to the dispersion of nanoparticles in a base oil, and has attracted researchers due to its potential application. In addition to being used in the tribology field, nanoparticles are also used for medical, space, and composites purposes. The addition of nanoparticles in base oils is promising because it enhances specific tribological characteristics including wear-resistance and friction, and the most important reason is that the majority of them are environmentally friendly. This paper reviews the tribological effect of various nanoparticles as lubricant additives. Parameters of nanoparticles that affect tribological performance, the technique to enhance stability, and lubrication mechanism that is currently believed to function will be delineated in detail. Moreover, this review facilitates an understanding of the role of various nanoparticles, which helps in develop... [more]
117. LAPSE:2021.0372
Effect of Barium Addition on Hydrolytic Enzymatic Activities in Food Waste Degradation under Anaerobic Conditions
May 17, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: amylases, anaerobic digestion, cellulases, enzymatic hydrolysis, food waste
Enzymatic hydrolysis of complex components of residual materials, such as food waste, is a rate-limiting step that conditionates the production rate of biofuels. Research into the anaerobic degradation of cellulose and starch, which are abundant components in organic waste, could contribute to optimize biofuels production processes. In this work, a lab-scale anaerobic semi-continuous hydrolytic reactor was operated for 171 days using food waste as feedstock; the effect of Ba2+ dosage over the activity of five hydrolytic enzymes was also evaluated. No significant effects were observed on the global performance of the hydrolytic process during the steady-state of the operation of the reactor, nevertheless, it was detected that Ba2+ promoted β-amylases activity by 76%, inhibited endoglucanases and α-amylases activity by 39 and 20%, respectively, and had no effect on β-glucosidases and glucoamylases activity. The mechanisms that rule the observed enzymatic activity changes remain unknown;... [more]
118. LAPSE:2021.0371
Analysis of Soot Deposition Mechanisms on Nickel-Based Anodes of SOFCs in Single-Cell and Stack Environment
May 17, 2021 (v1)
Subject: Process Monitoring
Keywords: Boudouard reaction, carbon deposition, SOFC
Solid oxide fuel cells (SOFCs) can be fueled with various gases, including carbon-containing compounds. High operating temperatures, exceeding 600 °C, and the presence of a porous, nickel-based SOFC anode, might lead to the formation of solid carbon particles from fuels such as carbon monoxide and other gases with hydrocarbon-based compounds. Carbon deposition on fuel electrode surfaces can cause irreversible damage to the cell, eventually destroying the electrode. Soot formation mechanisms are strictly related to electrochemical, kinetic, and thermodynamic conditions. In the current study, the effects of carbon deposition on the lifetime and performance of SOFCs were analyzed in-operando, both in single-cell and stack conditions. It was observed that anodic gas velocity has an impact on soot formation and deposition, thus it was also studied in depth. Single-anode-supported solid oxide fuel cells were fueled with gases delivered in such a way that the initial velocities in the anodic... [more]
119. LAPSE:2021.0370
Prediction of the Solubility of CO2 in Imidazolium Ionic Liquids Based on Selective Ensemble Modeling Method
May 17, 2021 (v1)
Subject: Intelligent Systems
Keywords: Carbon Dioxide, fuzzy C–means, ionic liquids, Modelling, prediction, selective ensemble, solubility
Solubility data is one of the essential basic data for CO2 capture by ionic liquids. A selective ensemble modeling method, proposed to overcome the shortcomings of current methods, was developed and applied to the prediction of the solubility of CO2 in imidazolium ionic liquids. Firstly, multiple different sub−models were established based on the diversities of data, structural, and parameter design philosophy. Secondly, the fuzzy C−means algorithm was used to cluster the sub−models, and the collinearity detection method was adopted to eliminate the sub−models with high collinearity. Finally, the information entropy method integrated the sub−models into the selective ensemble model. The validation of the CO2 solubility predictions against experimental data showed that the proposed ensemble model had better performance than its previous alternative, because more effective information was extracted from different angles, and the diversity and accuracy among the sub−models were fully inte... [more]
120. LAPSE:2021.0369
Carbon Emission Reduction Potential in the Finnish Energy System Due to Power and Heat Sector Coupling with Different Renovation Scenarios of Housing Stock
May 17, 2021 (v1)
Subject: Energy Policy
Keywords: borehole heat exchanger, emission reduction, Optimization, power-to-heat, residential building renovation, sector coupling, wind power
In the pursuit of mitigating the effects of climate change the European Union and the government of Finland have set targets for emission reductions for the near future. This study examined the carbon emission reduction potential in the Finnish energy system with power-to-heat (P2H) coupling of the electricity and heat sectors with different housing renovation levels. The measures conducted in the energy system were conducted as follows. Wind power generation was increased in the Finnish power system with 10 increments. For each of these, the operation of hydropower was optimized to maximize the utilization of new wind generation. The excess wind generation was used to replace electricity and heat from combined heat and power production for district heating. The P2H conversion was performed by either 2000 m deep borehole heat exchangers coupled to heat pumps, with possible priming of heat, or with electrode boilers. The housing stock renovated to different levels affected both the elec... [more]
121. LAPSE:2021.0368
Influences of Ash-Existing Environments and Coal Structures on CO2 Gasification Characteristics of Tri-High Coal
May 17, 2021 (v1)
Subject: Reaction Engineering
Keywords: ash-free coal, CO2 gasification, coal structure, tri-high coal
Two kinds of tri-high coals were selected to determine the influences of ash-existing environments and coal structures on CO2 gasification characteristics. The TGA results showed that the gasification of ash-free coal (AFC) chars was more efficient than that of corresponding raw coal (RC) chars. To uncover the reasons, the structures of RCs and AFCs, and their char samples prepared at elevated temperatures were investigated with SEM, BET, XRD, Raman and FTIR. The BET, SEM and XRD results showed that the Ash/mineral matter is associated with coal, carbon forms the main structural framework and mineral matters are found embedded in the coal structure in the low-rank tri-high coal. The Raman and FTIR results show that the ash can hinder volatile matters from exposing to the coal particles. Those results indicate that the surface of AFC chars has more free active carbon sites than raw coal chars, which are favorable for mass transfer between C and CO2, thereby improving reactivity of the A... [more]
122. LAPSE:2021.0367
Characterisation of Bioactive Ingredients in Extracts of Fresh and Dried Coniferous Trees for the Development of Sustainable Packaging Materials
May 17, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: Abies nordmanniana, Abies procera, additive, antioxidant, coniferous woods, Extraction, Picea abies, Picea pungens, stabiliser, total phenolic content, UV
Background: Coniferous woods (Abies nordmanniana (Stev.) Spach, Abies procera Rehd, Picea abies (L.) H.Karst, and Picea pungens Engelm.) could contain useful secondary metabolites to produce sustainable packaging materials, e.g., by substitution of harmful petrol-based additives in plastic packaging. This study aims to characterise the antioxidant and light-absorbing properties and ingredients of different coniferous wood extracts with regard to different plant fragments and drying conditions. Furthermore, the valorisation of used Christmas trees is evaluated. Methods: Different drying and extraction techniques were applied with the extracts being characterised by determining the total phenolic content (TPC), total antioxidant capacity (TAC), and absorbance in the ultraviolet range (UV). Gas chromatography coupled with mass spectrometry (GC-MS) and an acid−butanol assay (ABA) were used to characterise the extract constituents. Results: All the extracts show a considerably high UV absor... [more]
123. LAPSE:2021.0366
A Reference-Model-Based Neural Network Control Method for Multi-Input Multi-Output Temperature Control System
May 17, 2021 (v1)
Subject: Process Control
Keywords: multi-input multi-output temperature system, neural network control, temperature uniformity, transient response
Neural networks (NNs), which have excellent ability of self-learning and parameter adjusting, has been widely applied to solve highly nonlinear control problems in industrial processes. This paper presents a reference-model-based neural network control method for multi-input multi-output (MIMO) temperature system. In order to improve the learning efficiency of the NN control, a reference model is introduced to provide the teaching signal for the NN controller. The control inputs for the MIMO system are given by the sum of the output of the conventional integral-proportional-derivative (I-PD) controller and the outputs of the neural network controller. The proposed NN control method can not only improve the transient response of the system, but can also realize temperature uniformity in MIMO temperature systems. To verify the proposed method, simulations are carried out in MATLAB/SIMULINK environment and experiments are carried out on the DSP (Digital Signal Processor)-based experimenta... [more]
124. LAPSE:2021.0365
Aerodynamic Performance of an Octorotor SUAV with Different Rotor Spacing in Hover
May 17, 2021 (v1)
Subject: Modelling and Simulations
Keywords: aerodynamic performance, Computational Fluid Dynamics, hover, octorotor SUAV, rotor spacing, vortices distribution
To study the aerodynamic performance of hovering octorotor small unmanned aerial vehicles (SUAV) with different rotor spacing, the computational fluid dynamics (CFD) method is applied to analyze the flow field of an octorotor SUAV in detail. In addition, an experimental platform is built to measure the thrust and power of the rotors with rotor spacing ratios L/D of 1.0, 1.2, 1.4, 1.6, and 1.8, sequentially. According to the theory of momentum, rotor aerodynamic performance is obtained with qualitative analysis. Further analysis with numerical simulation is presented with the flow field of the octorotor SUAV, the vorticity distribution, velocity distribution, pressure distribution, and streamline. The results show that the aerodynamic performance varies with the rotor spacing. Specifically, the aerodynamic performance is poor at L/D = 1.0, which is accompanied with strong interaction of wake and tip vortexes and interaction with each other. However, the aerodynamic efficiency is much im... [more]
125. LAPSE:2021.0364
Fitness Landscape Analysis and Edge Weighting-Based Optimization of Vehicle Routing Problems
May 17, 2021 (v1)
Subject: Optimization
Keywords: fitness landscape, Optimization, traveling salesman problem, vehicle routing problem
Vehicle routing problem (VRP) is a highly investigated discrete optimization problem. The first paper was published in 1959, and later, many vehicle routing problem variants appeared to simulate real logistical systems. Since vehicle routing problem is an NP-difficult task, the problem can be solved by approximation algorithms. Metaheuristics give a “good” result within an “acceptable” time. When developing a new metaheuristic algorithm, researchers usually use only their intuition and test results to verify the efficiency of the algorithm, comparing it to the efficiency of other algorithms. However, it may also be necessary to analyze the search operators of the algorithms for deeper investigation. The fitness landscape is a tool for that purpose, describing the possible states of the search space, the neighborhood operator, and the fitness function. The goal of fitness landscape analysis is to measure the complexity and efficiency of the applicable operators. The paper aims to invest... [more]
126. LAPSE:2021.0363
Thermo-Acoustic Catalytic Effect on Oxidizing Woody Torrefaction
May 17, 2021 (v1)
Subject: Reaction Engineering
Keywords: catalytic effect, numerical modeling, severity factors, thermoacoustic, woody biomass torrefaction
The torrefaction (mild pyrolysis) process modifies biomass chemical and physical properties and is applied as a thermochemical route to upgrade solid fuel. In this work, the catalytic effect of thermo-acoustic on oxidizing woody torrefaction is assessed. The combined effect of two acoustic frequencies (1411, 2696 Hz) and three temperatures (230, 250, and 290 °C) was evaluated through weight loss and its deviation curves, calculated torrefaction severity index (TSI), as well as proximate, calorific, and compression strength analysis of Eucalyptus grandis. A new index to account for the catalytic effects on torrefaction (TCEI) was introduced, providing the quantitative analysis of acoustic frequencies influence. A two-step consecutive reaction numerical model allowed the thermo-acoustic experiment evaluation. For instance, the thermogravimetric profiles revealed that the acoustic field has a catalytic effect on wood torrefaction and enhances the biomass oxidation process for severe treat... [more]
127. LAPSE:2021.0362
High-Performance Mg−Al−Bi Alloy Anode for Seawater Batteries and Related Mechanisms
May 17, 2021 (v1)
Subject: Materials
Keywords: discharge, electrochemical performance, Mg–8Al–xBi alloy, utilization efficiency
Bi, a group 15 element, was added to magnesium alloys and applied to seawater batteries in marine operating machinery to improve the electrochemical performance and corrosion resistance of the battery. The electrochemical properties of as-cast pure Mg, Mg−8Al, and Mg−8Al−xBi alloy anodes in 3.5% NaCl solution were researched. Electrochemical impedance spectroscopy and an immersion test in 3.5% NaCl solution show that the Mg−8%Al−0.4%Bi alloy provides better corrosion resistance than Mg and the Mg−8Al alloy. The galvanostatic discharge results show that the Mg−8%Al−0.4%Bi alloy revealed better electrochemical properties and utilization efficiency in 3.5% NaCl solution. The Mg17Al12 and BiOCl phases formed during the discharge process of the Mg−8%Al−0.4%Bi alloy play an important role in improving the electrochemical performance and utilization efficiency of the alloy.
128. LAPSE:2021.0361
Biosensing on the Centrifugal Microfluidic Lab-on-a-Disc Platform
May 17, 2021 (v1)
Subject: Biosystems
Keywords: biosensors, centrifugal microfluidics, LoaD platforms, microfluidics, PoC devices
Lab-on-a-Disc (LoaD) biosensors are increasingly a promising solution for many biosensing applications. In the search for a perfect match between point-of-care (PoC) microfluidic devices and biosensors, the LoaD platform has the potential to be reliable, sensitive, low-cost, and easy-to-use. The present global pandemic draws attention to the importance of rapid sample-to-answer PoC devices for minimising manual intervention and sample manipulation, thus increasing the safety of the health professional while minimising the chances of sample contamination. A biosensor is defined by its ability to measure an analyte by converting a biological binding event to tangible analytical data. With evolving manufacturing processes for both LoaDs and biosensors, it is becoming more feasible to embed biosensors within the platform and/or to pair the microfluidic cartridges with low-cost detection systems. This review considers the basics of the centrifugal microfluidics and describes recent developm... [more]
129. LAPSE:2021.0360
Thermal Decontamination of Spent Activated Carbon Contaminated with Radiocarbon and Tritium
May 17, 2021 (v1)
Subject: Reaction Engineering
Keywords: radiocarbon, reactivation, spent activated carbon, thermal desorption, tritium
The thermal desorption of tritium (3H, T) and radiocarbon (14C) from spent activated carbon was investigated and three thermal desorption steps were established: the vaporization of homogeneously condensed molecules, the desorption of molecules physically binding with the carbon surface, and the decomposition of chemisorbed molecules. A model-free kinetic analysis was conducted to establish the optimum condition of vacuum thermal desorption. Physisorbed species, including tritiated water (HTO) and 14CO2, were effectively removed by vacuum thermal desorption. However, a fraction of 14C, which may take the form of carbon molecules in pyrocarbon form during the heating process, was not removed, even at a high temperature of 1000 °C under a vacuum of 0.3−0.5 Pa. Oxidative peeling of the pore surfaces by filling the evacuated pores with pure oxygen via vacuum thermal desorption and heating to 700 °C was found to be effective for reducing the level of 14C to a level below the established fre... [more]
130. LAPSE:2021.0359
Rapid Multi-Objective Optimization of Periodically Operated Processes Based on the Computer-Aided Nonlinear Frequency Response Method
May 17, 2021 (v1)
Subject: Process Operations
Keywords: computer-aided nonlinear frequency response, cost–benefit indicator analysis, dynamic multi-objective optimization, forced periodic regime, Process Intensification
The dynamic optimization of promising forced periodic processes has always been limited by time-consuming and expensive numerical calculations. The Nonlinear Frequency Response (NFR) method removes these limitations by providing excellent estimates of any process performance criteria of interest. Recently, the NFR method evolved to the computer-aided NFR method (cNFR) through a user-friendly software application for the automatic derivation of the functions necessary to estimate process improvement. By combining the cNFR method with standard multi-objective optimization (MOO) techniques, we developed a unique cNFR−MOO methodology for the optimization of periodic operations in the frequency domain. Since the objective functions are defined with entirely algebraic expressions, the dynamic optimization of forced periodic operations is extraordinarily fast. All optimization parameters, i.e., the steady-state point and the forcing parameters (frequency, amplitudes, and phase difference), ar... [more]
131. LAPSE:2021.0358
Preliminary Computational Analysis of Three Configurations for an Innovative Ventricular Chamber
May 17, 2021 (v1)
Subject: Biosystems
Keywords: finite element analysis, LS DYNA, TAH, ventricular chamber
(1) Background: shape, dimension, hemodynamics, and hemocompatibility are just a few of the several challenging key points that must be addressed in designing any suitable solution for the ventricular chamber of mechanical circulatory support devices. A preliminary evaluation of different geometries of bellow-like ventricular chambers is herein proposed. The chambers were made with a polycarbonate urethane that is acknowledged to be a hemocompatible polymer. (2) Methods: an explicit dynamic computational analysis was performed. The actuation of the three chambers was simulated without the presence of an internal fluid. Maximum stress and strain values were identified, as well as the most critical regions. Geometric changes were checked during simulated motion to verify that the dimensional constraints were satisfied. (3) Results: one chamber appeared to be the best solution compared to the others, since its dimensional variations were negligible, and effective stresses and strains did... [more]
132. LAPSE:2021.0357
CFD Modeling of Spatial Inhomogeneities in a Vegetable Oil Carbonation Reactor
May 17, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: biomass valorization, carbonation modeling, Computational Fluid Dynamics, spatial coordinate-based material properties
Fossil materials are widely used raw materials in polymerization processes; hence, in many cases, the primary goal of green and sustainable technologies is to replace them with renewables. An exciting and promising technology from this aspect is the isocyanate-free polyurethane production using vegetable oil as a raw material. Functional compounds can be formed by the epoxidation of vegetable oils in three reaction steps: epoxidation, carbonation, and aminolysis. In the case of vegetable oil carbonation, the material properties vary strongly, with the composition affecting the solubility of CO2 in the reaction mixture. Many attempts have been made to model these interactions, but they generally do not account for the changes in the material properties in terms of spatial coordinates. A 2D CFD model based on the combination of the k-ε turbulence model and component mass balances considering the spatial inhomogeneities on the performance of the reactor was created. After the evaluation o... [more]
133. LAPSE:2021.0356
An Experimental Study of Turbulent Mixing in Channel Flow Past a Grid
May 11, 2021 (v1)
Subject: Other
Keywords: 3D scanning, Agrawal decomposition, grid turbulence, Mixing, particle image velocimetry, turbulent kinetic energy
Grid turbulence is considered to be a canonical case of turbulent flow. In the presented paper, the flow structure is analyzed from the point of view of mixing properties, where vortical structures and their properties play a significant role. That is why the effect of various length-scales in turbulence is studied separately. The experimental study uses the Particle Image Velocimetry (PIV) method. The original method for spatial spectrum evaluation is applied. Results on vortex spatial spectrum and isotropy are presented. The scaling of turbulent kinetic energy (TKE) is measured; furthermore, the TKE is decomposed according to the length-scales of the fluctuations. By this method, we found that the decay of TKE associated with the smallest length-scales is more sensitive to the Reynolds number than that at larger length-scales. The TKE at the largest investigated length-scales decays more slowly. The turbulence decay-law is studied for various Reynolds numbers. The second and fourth s... [more]
134. LAPSE:2021.0355
Kinetics and Modeling of Aqueous Phase Radical Homopolymerization of 3-(Methacryloylaminopropyl)trimethylammonium Chloride and its Copolymerization with Acrylic Acid
May 11, 2021 (v1)
Subject: Reaction Engineering
Keywords: aqueous phase polymerization, modeling and simulation, polyelectrolytes, radical polymerization
The radical homopolymerization kinetics of 3-(methacryloylaminopropyl) trimethylammonium chloride (MAPTAC) and its batch copolymerization with nonionized acrylic acid (AA) in aqueous solution are investigated and modeled. The drift in monomer composition is measured during copolymerization by in situ NMR over a range of initial AA molar fractions and monomer weight fractions up to 0.35 at 50 °C. The copolymer becomes enriched in MAPTAC for monomer mixtures containing up to 60 mol% MAPTAC, but is enriched in AA for MAPTAC-rich mixtures; this azeotropic behavior is dependent on initial monomer content, as electrostatic interactions from the cationic charges influence the system reactivity ratios. Models for MAPTAC homopolymerization and AA-MAPTAC copolymerization are developed to represent the rates of monomer conversion and comonomer composition drifts over the complete range of experimental conditions.
135. LAPSE:2021.0354
PEMFC Transient Response Characteristics Analysis in Case of Temperature Sensor Failure
May 11, 2021 (v1)
Subject: Process Monitoring
Keywords: controller, dynamic system model, fault scenario, fault tolerance control, fuel cell vehicle, thermal management system
In this study, transient responses of a polymer electrolyte fuel cell system were performed to understand the effect of sensor fault signal on the temperature sensor of the stack and the coolant inlet. We designed a system-level fuel cell model including a thermal management system, and a controller to analyze the dynamic behavior of fuel cell system applied with variable sensor fault scenarios such as stuck, offset, and scaling. Under drastic load variations, transient behavior is affected by fault signals of the sensor. Especially, the net power of the faulty system is 45.9 kW. On the other hand, the net power of the fault free system is 46.1 kW. Therefore, the net power of a faulty system is about 0.2 kW lower than that of a fault-free system. This analysis can help in understanding the transient behavior of fuel cell systems at the system level under fault situations and provide a proper failure avoidance control strategy for the fuel cell system.