Browse
Records Added in May 2021
Records added in May 2021
Change month: January | February | March | April | May | June | July | August | September | October | November | December
86. LAPSE:2021.0403
Quality of Sugar Beets under the Effects of Digestate Application to the Soil
May 25, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: beet pulp, beet quality parameters, digestate, gasifier, sugar beet
Management of digestate from production of biogas has a great environmental importance. One of feedstock for biogas generation is beet pulp, a side product of sugar beet processing plant. In the paper a closed loop of beet pulp utilization at sugar beet plantation is presented. Effects of soil application of digestate obtained from digestion of sugar beet pulp were compared with standard mineral fertilizers. The field experiment was performed in three successive growing seasons. The studies were concentrated on quality of sugar beets grown under effects of two fertilization treatments—soil application of digestate cv. standard mineral fertilizers. It was found that some important quality indices (weight of single sugar beet root, content of sucrose in root tissues) were higher for beet harvested from digestate treatment compared to standard mineral fertilization (control). The concentration of harmful component (amide nitrogen) in sugar beets grown under conditions of digestate soil ap... [more]
87. LAPSE:2021.0402
Biological Evaluation of Azetidine-2-One Derivatives of Ferulic Acid as Promising Anti-Inflammatory Agents
May 25, 2021 (v1)
Subject: Biosystems
Keywords: acute inflammation, azetidine-2-one derivatives, biochemical parameters, chronic inflammation, ferulic acid, histopathological study
The purpose of this study was to evaluate the in vivo biological potential of new azetidine-2-one derivatives of ferulic acid (6a−f). First, the in vivo acute toxicity of azetidine-2-one derivatives of ferulic acid on Swiss white mice was investigated and, based on the obtained results, it can be stated that the studied derivatives belong to compounds with moderate toxicity. The in vivo anti-inflammatory potential of these derivatives was determined in a model of acute inflammation induced by carrageenan in rats and in a chronic inflammation model induced in rats using the granuloma test. In the acute inflammation model, all the studied compounds had a maximum anti-inflammatory effect 24 h after administration, which suggests that these compounds may be classified, from a pharmacokinetic point of view, in the category of long-acting compounds. The most active compound in the series was found to be compound 6b. In the case of the chronic inflammation model, it was observed that the stud... [more]
88. LAPSE:2021.0401
Modeling, Control, and Prediction of the Spread of COVID-19 Using Compartmental, Logistic, and Gauss Models: A Case Study in Iraq and Egypt
May 25, 2021 (v1)
Subject: Process Control
Keywords: compartmental model, control measures, COVID-19, Gaussian model, logistic growth model, parameter estimation, second wave, sensitivity analysis
In this paper, we study and investigate the spread of the coronavirus disease 2019 (COVID-19) in Iraq and Egypt by using compartmental, logistic regression, and Gaussian models. We developed a generalized SEIR model for the spread of COVID-19, taking into account mildly and symptomatically infected individuals. The logistic and Gaussian models were utilized to forecast and predict the numbers of confirmed cases in both countries. We estimated the parameters that best fit the incidence data. The results provide discouraging forecasts for Iraq from 22 February to 8 October 2020 and for Egypt from 15 February to 8 October 2020. To provide a forecast of the spread of COVID-19 in Iraq, we present various simulation scenarios for the expected peak and its timing using Gaussian and logistic regression models, where the predicted cases showed a reasonable agreement with the officially reported cases. We apply our compartmental model with a time-periodic transmission rate to predict the possibl... [more]
89. LAPSE:2021.0400
Economic Analysis of a Freeze-Drying Cycle
May 25, 2021 (v1)
Subject: Process Design
Keywords: costs analysis, freeze-drying, lyophilization, Optimization
Freeze-drying has always been considered an extremely expensive procedure to dehydrate food or pharmaceutical products, and for this reason, it has been employed only if strictly necessary or when the high added value of the final product could justify the costs. However, little effort has been made to analyze the factors that make this technology so unaffordable. In this work, a model was proposed to calculate in detail the operational (OC) and capital costs (CC) of a freeze-drying cycle and an evaluation of the process bottlenecks was made. The main result is that the process itself, contrary to the classic belief, is not the most expensive part of freeze-drying, while the initial investment is the real limiting factor. Under this consideration, the optimization of a freeze-drying cycle should be formulated in order to fit more cycles in the lifespan of the apparatus, instead of merely reducing the power consumption of the machine.
90. LAPSE:2021.0399
Minimizing Tardiness Penalty Costs in Job Shop Scheduling under Maximum Allowable Tardiness
May 25, 2021 (v1)
Subject: Planning & Scheduling
Keywords: job shop scheduling, maximum allowable tardiness, probabilistic dispatching rules, semiconductor, tardiness penalty
In many manufacturing or service industries, there exists maximum allowable tardiness for orders, according to purchase contracts between the customers and suppliers. Customers may cancel their orders and request compensation for damages, for breach of contract, when the delivery time is expected to exceed maximum allowable tardiness, whereas they may accept the delayed delivery of orders with a reasonable discount of price within maximum allowable tardiness. Although many research works have been produced on the job shop scheduling problem relating to minimizing total tardiness, none of them have yet considered problems with maximum allowable tardiness. In this study, we solve a job shop scheduling problem under maximum allowable tardiness, with the objective of minimizing tardiness penalty costs. Two kinds of penalty costs are considered, i.e., one for tardy jobs, and the other for canceled jobs. To deal with this problem within a reasonable time at actual production facilities, we p... [more]
91. LAPSE:2021.0398
Equilibrium, Kinetic and Thermodynamic Studies for Sorption of Phosphate from Aqueous Solutions Using ZnO Nanoparticles
May 25, 2021 (v1)
Subject: Reaction Engineering
Keywords: aqueous solution, equilibrium, kinetic, nanoparticles, phosphate, thermodynamic, ZnO
In this study, ZnO nanoparticles were fabricated by using the hydrothermal method for adsorption of phosphate from wastewater. The obtained ZnO nanorods were characterized by powder X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), specific surface area (BET) and energy dispersive X-ray spectroscopy (EDS). The ZnO materials were applied for adsorption of phosphate from water using batch experiments. The effects of pH (4−10), adsorption time (30−240 min), the amount of adsorbent (0.1−0.7 g/L) and initial concentration of phosphate (147.637−466.209 mg/L) on the adsorption efficiency were investigated. The optimum condition was found at pH = 5 and at an adsorption time of 150 min. The adsorption was fitted well with the Langmuir isotherm and the maximum adsorption capacity was calculated to be 769.23 mg/g. These results show that ZnO nanomaterial would highly promising for adsorbing phosphate from water. The adsorption of phosphate on ZnO nanomaterials follows the... [more]
92. LAPSE:2021.0397
A Numerical Study on the Pilot Injection Conditions of a Marine 2-Stroke Lean-Burn Dual Fuel Engine
May 25, 2021 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, dual-fuel engine, pre-combustion chamber, Simulation, two-stroke
The global demand for clean fuels is increasing in order to meet the requirements of the International Maritime Organization (IMO) of 0.5% global Sulphur cap and Tier III emission limits. Natural gas has begun to be popularized on liquefied natural gas (LNG) ships because of its low cost and environment friendly. In large-bore marine engines, ignition with pilot fuel in the prechamber is a good way to reduce combustion variability and extend the lean-burn limit. However, the occurrence of knock limits the increase in power. Therefore, this paper investigates the effect of pilot fuel injection conditions on performance and knocking of a marine 2-stroke low-pressure dual-fuel (LP-DF) engine. The engine simulations were performed under different pilot fuel parameters. The results showed that the average in-cylinder temperature, the average in-cylinder pressure, and the NOx emissions gradually decreased with the delay of the pilot injection timing. Furthermore, the combustion situation gra... [more]
93. LAPSE:2021.0396
Use of Titanium Dioxide (TiO2) Nanoparticles as Reinforcement Agent of Polysaccharide-Based Materials
May 25, 2021 (v1)
Subject: Materials
Keywords: cross-linking agent, functionalization, hybrid material, polysaccharides, titanium dioxide
In recent years, a strong interest has emerged in polysaccharide-hybrid composites and their potential applications, which have interesting functional and technological properties. This review summarizes and discusses the reported advantages and limitations of the functionalization of conventional and nonconventional polysaccharides by adding TiO2 nanoparticles as a reinforcement agent. Their effects on the mechanical, thermal, and UV-barrier properties as well as their water-resistance are discussed. In general, the polysaccharide−TiO2 hybrid materials showed improved physicochemical properties in a TiO2 content-dependent response. It showed antimicrobial activity against bacteria (gram-negative and gram-positive), yeasts, and molds with enhanced UV-protective effects for food and non-food packaging purposes. The reported applications of functionalized polysaccharide−TiO2 composites include photocatalysts (dye removal from aqueous media and water purification), biomedical (wound-heali... [more]
94. LAPSE:2021.0395
A Potential Inhibition Process of Ricin Protein with the flavonoids Quercetin and Epigallocatechin Gallate. A Quantum-Chemical and Molecular Docking Study
May 25, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: charge transfer, DFT, epigallocatechin gallate, MEP, molecular docking, molecular interactions, quercetin, ricin
Castor bean (Ricinus Communis) oil has been reported as one of the most important bio-based fuels; however, high amounts of toxic solid residue are generated in the production. This toxicity is due to several molecules, ricin protein being the most studied compound. The inhibition of the ricin protein is essential for eliminating its toxicity. The objective of this study is to predict the possible inhibition process via the interactions between the ricin protein and the flavonoids quercetin (Q) and epigallocatechin gallate (EGCG). The molecular structures of the complexes formed between the ricin protein and flavonoids were studied using quantum-chemical and molecular docking calculations to analyze the type of interaction, active site of the protein, binding energies, and different conformations in the inhibition process. Different methodologies were applied for the molecular structure determination; the best approximation was obtained with B3LYP/6-31G (d,p) theoretical methodology. M... [more]
95. LAPSE:2021.0394
Unsteady-State Mathematical Modeling of Hydrocarbon Feedstock Pyrolysis
May 25, 2021 (v1)
Subject: Modelling and Simulations
Keywords: hydrocarbon feedstock, mathematical model, pyrolysis, unsteady-state
Hydrocarbon feedstock pyrolysis is an important method for obtaining monomers that are then used to produce various polymer materials. During this process, a mixture of hydrocarbons is heated at a high temperature and in the absence of oxygen. Because of the side reactions of polymerization and polycondensation, coke products are formed and settle on the inner walls of the coil. This decreases the technical efficiency of the hydrocarbon pyrolysis furnace during its operation, making the process unsteady. In the present research, we developed an unsteady-state mathematical model of hydrocarbon feedstock pyrolysis in order to improve the monitoring, forecasting, and optimization of this technological process. This model can calculate the rate of coke deposition along the length of the coil, considering the technological parameters and the composition of the supplied raw materials (the calculated value of coke deposition rate equals 0.01 mm/day). It was shown that with an increase in the... [more]
96. LAPSE:2021.0393
A CFD-Based Shape Design Optimization Process of Fixed Flow Passages in a Francis Hydro Turbine
May 24, 2021 (v1)
Subject: Process Design
Keywords: Computational Fluid Dynamics, fixed flow passage, flow uniformity, Francis turbine, shape optimization
In recent times, optimization began to be popular in the turbomachinery field. The development of computational fluid dynamics (CFD) analysis and optimization technology provides the opportunity to maximize the performance of hydro turbines. The optimization techniques are focused mainly on the rotating components (runner and guide vane) of the hydro turbines. Meanwhile, fixed flow passages (stay vane, casing, and draft tube) are essential parts for the proper flow uniformity in the hydro turbines. The suppression of flow instabilities in the fixed flow passages is an inevitable process to ensure the power plant safety by the reduction of vortex-induced vibration and pressure pulsation in the hydro turbines. In this study, a CFD-based shape design optimization process is proposed with response surface methodology (RSM) to improve the flow uniformity in the fixed flow passages of a Francis hydro turbine model. The internal flow behaviors were compared between the initial and optimal sha... [more]
97. LAPSE:2021.0392
Direct Solid Oxide Electrolysis of Carbon Dioxide: Analysis of Performance and Processes
May 24, 2021 (v1)
Subject: Reaction Engineering
Keywords: Carbon Dioxide, carbon dioxide reduction, carbon dioxide utilization, CO2-electrolysis, high-temperature electrolysis, solid oxide electrolysis
Chemical industries rely heavily on fossil resources for the production of carbon-based chemicals. A possible transformation towards sustainability is the usage of carbon dioxide as a source of carbon. Carbon dioxide is activated for follow-up reactions by its conversion to carbon monoxide. This can be accomplished by electrochemical reduction in solid oxide cells. In this work, we investigate the process performance of the direct high-temperature CO2 electrolysis by current-voltage characteristics (iV) and Electrochemical Impedance Spectroscopy (EIS) experiments. Variations of the operation parameters temperature, load, fuel utilization, feed gas ratio and flow rate show the versatility of the procedure with maintaining high current densities of 0.75 up to 1.5 A·cm−2, therefore resulting in high conversion rates. The potential of the high-temperature carbon dioxide electrolysis as a suitable enabler for the activation of CO2 as a chemical feedstock is therefore appointed and shown.
98. LAPSE:2021.0391
Experimental Determination of the Energetic Performance of a Racing Motorcycle Battery-Pack
May 24, 2021 (v1)
Subject: Energy Management
Keywords: battery-pack sizing, electric motorcycle prototype, energetic performance, experimental results, performance tests
This paper presents the evaluation of the energetic performance of the battery-pack from the motorcycle prototype EME 16E. This racing prototype was developed by a student team from the Universidad Politécnica de Madrid (UPM) to participate in the MotoStudent competition during 2015−2016. This study includes the sizing and assembly of the motorcycle’s battery-pack under strict regulations and a limited budget. The prototype was also tested under different performance conditions, such as laboratory tests and racing circuits. Experimental results show that the proposed battery-pack is capable of supplying the energy and power necessary to drive the motorcycle in all cases analyzed.
99. LAPSE:2021.0390
Fabrication of Macroporous Nafion Membrane from Silica Crystal for Ionic Polymer-Metal Composite Actuator
May 24, 2021 (v1)
Subject: Materials
Keywords: ionic polymer-metal composite actuator, macroporous structure, nafion membrane, nanocomposites, nanoparticles, silica crystal
Nafion membrane with macropores is synthesized from silica crystal and composited with Pt nanoparticles to fabricate macroporous ionic polymer-metal composite (M-IPMC) actuator. M-IPMC shows highly dispersed small Pt nanoparticles on the porous walls of Nafion membrane. After the electromechanical performance test, M-IPMC actuator demonstrates a maximum displacement output of 19.8 mm and a maximum blocking force of 8.1 mN, far better than that of IPMC actuator without macroporous structure (9.6 mm and 2.8 mN) at low voltages (5.8−7.0 V). The good electromechanical performance can be attributed to interconnected macropores that can improve the charge transport during the actuation process and can allow the Pt nanoparticles to firmly adsorb, leading to a good electromechanical property.
100. LAPSE:2021.0389
Phenolic Acids from Lycium barbarum Leaves: In Vitro and In Silico Studies of the Inhibitory Activity against Porcine Pancreatic α-Amylase
May 24, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: antioxidant activity, bioactives, food waste, goji leaves, hypoglycaemic activity, molecular docking, UAE
Nowadays, bioactive compounds from vegetable food and waste are of great interest for their inhibitory potential against digestive enzymes. In the present study, the inhibitory activity of methanolic extract from Lycium barbarum leaves on porcine pancreas α-amylase has been studied. The α-amylase inhibitory activity of the constituent phenolic acids was also investigated. The leaves were extracted by ultrasound-assisted method, one of the most efficient techniques for bioactive extraction from plant materials, and then the phenolic acids were identified by Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) Liquid Chromatography/Mass Spectrometry (LC/MS). Chlorogenic and salicylic acids were the most abundant phenolic acids in L. barbarum leaf extract. The inhibitory effect against α-amylase, determined for individual compounds by in vitro assay, was higher for chlorogenic, salicylic, and caffeic acids. L. barbarum leaf extract showed an appreciable α-amylase inhibitory effect in a concent... [more]
101. LAPSE:2021.0388
Transient Process and Micro-mechanism of Hydrofoil Cavitation Collapse
May 24, 2021 (v1)
Subject: Other
Keywords: cavitation test, collapse, falling bubbles, two-dimensional hydrofoil
Cavitation will cause abnormal flow, causing a series of problems such as vibration, noise, and erosion of solid surfaces. In severe cases, it may even destroy the entire system. Cavitation is a key problem to be solved for hydraulic machinery and underwater robots, and the attack angle is one of the most important factors affecting the cavitation. In order to systematically study the impact of the attack angle on the hydrofoil cavitation, the hydrofoils of NACA 4412 with different attack angles were selected to study the collapse process and hydraulic characteristics such as pressure, velocity, vortex, and turbulent kinetic energy during cavitation. The results showed that when the cavitation number was the same, the process of cavity collapse was greatly affected by the attack angle. The length of the cavity collapse area was positively correlated with the attack angle. As the attack angle increased, the volume of the falling bubbles increased, resulting in a larger pressure peak cau... [more]
102. LAPSE:2021.0387
Solid-State Compounding for Recycling of Sawdust Waste into Green Packaging Composites
May 24, 2021 (v1)
Subject: Materials
Keywords: compounding, cryomilling, sawdust, wood plastic composites
The present study explores solid-state cryomilling for the compounding of green composites. Herein, wood plastic composites (WPCs) composed of sawdust (SD) and poly(ε-caprolactone) (PCL) with various compositions were prepared. Two compounding techniques, namely, extrusion and cryomilling, were utilized to prepare WPC raw material pellets and powders, respectively, for comparison purposes. Flat pressing was further utilized to prepare WPC films for testing. Morphological, structural, thermal, mechanical, and surface wettability properties were investigated. Results indicate the advantages of cryomilling in producing WPCs. Scanning electron microscopy (SEM) along with optical micrographs revealed well ground SD particles and uniform distribution in the PCL matrix. Tensile strength and elongation at break of the composites declined with increasing SD content, however, the modulus of elasticity significantly increased. Water contact angles averaged less than 90°, implying partial wetting.... [more]
103. LAPSE:2021.0386
Non-Intrusive Monitoring Algorithm for Resident Loads with Similar Electrical Characteristic
May 24, 2021 (v1)
Subject: Energy Management
Keywords: load identification, modification of monitoring result, non-intrusive load monitoring, signal decomposition
Non-intrusive load monitoring is a vital part of an overall load management scheme. One major disadvantage of existing non-intrusive load monitoring methods is the difficulty to accurately identify loads with similar electrical characteristics. To overcome the various switching probability of loads with similar characteristics in a specific time period, a new non-intrusive load monitoring method is proposed in this paper which will modify monitoring results based on load switching probability distribution curve. Firstly, according to the addition theorem of load working currents, the complex current is decomposed into the independently working current of each load. Secondly, based on the load working current, the initial identification of load is achieved with current frequency domain components, and then the load switching times in each hour is counted due to the initial identified results. Thirdly, a back propagation (BP) neural network is trained by the counted results, the switchin... [more]
104. LAPSE:2021.0385
Performance Evaluation for a Sustainable Supply Chain Management System in the Automotive Industry Using Artificial Intelligence
May 24, 2021 (v1)
Subject: Intelligent Systems
Keywords: Artificial Intelligence, data mining, key performance indicator, neural network, performance evaluation, risk management
Increasing the sustainability of a system can be achieved by evaluating the system, identifying the issues and their root cause and solving them. Performance evaluation translates into key performance indicators (KPIs) with a high impact on increasing overall efficacy and efficiency. As the pool of KPIs has increased over time in the context of evaluating the supply chain management (SCM) system’s performance and assessing, communicating and managing its risks, a mathematical model based on neural networks has been developed. The SCM system has been structured into subsystems with the most relevant KPIs for set subsystems and their most important contributions on the increase in the overall SCM system performance and sustainability. As a result of the performed research based on the interview method, the five most relevant KPIs of each SCM subsystem and the most relevant problems are underlined. The main goal of this paper is to develop a performance evaluation model that links specifi... [more]
105. LAPSE:2021.0384
Au-Pd Bimetallic Nanocatalysts Incorporated into Carbon Nanotubes (CNTs) for Selective Oxidation of Alkenes and Alcohol
May 24, 2021 (v1)
Subject: Materials
Keywords: Au-Pd nanocatalysts, carbon nanotubes, oxidation reaction
Although supported bimetallic nanoparticles (Au-Pd NPs) demonstrate outstanding efficiency, challenges appear for carbon supported small and stable bimetallic nanoparticles used in liquid-phase reactions. In this work, Au-Pd NPs were supported on two types of carbon nanotubes: CNTs decorated covalently with carboxylic acid groups (O-CNTs) and non-covalently with the conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymer (P-CNTs). The Au-Pd NPs were prepared using the sol immobilization approach on the functionalized CNTs, and the effect of the utilized functionalization method on the properties of the immobilized metallic nanoparticles and the performance of the nanocomposite catalysts was investigated. The fabricated nanocomposites were characterized using Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, High-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). The catalytic performance of Au-Pd/O... [more]
106. LAPSE:2021.0383
Review of Sulfuric Acid Decomposition Processes for Sulfur-Based Thermochemical Hydrogen Production Cycles
May 17, 2021 (v1)
Subject: Process Design
Keywords: high temperature sulfuric acid decomposition, hydrogen production, reactor concepts, sulfuric acid concentration, sulfuric acid decomposition catalysts, thermochemical processes
Thermochemical processes based on sulfur compounds are among the most developed systems to produce hydrogen through water splitting. Due to their operating conditions, sulfur cycles are suited to be coupled with either nuclear or solar plants for renewable hydrogen production. A critical review of the most promising sulfur cycles, namely the Hybrid Sulfur, the Sulfur Iodine, the Sulfur Bromine and the Sulfur Ammonia processes, is given, including the work being performed for each cycle and discussing their maturity and performance for nuclear and solar applications. Each sulfur-based process is comprised of a sulfuric acid thermal section, where sulfuric acid is concentrated and decomposed to sulfur dioxide, water and oxygen, which is then separated from the other products and extracted. A critical review of the main solutions adopted for the H2SO4 thermal section, including reactor configurations, catalytic formulations, constitutive materials and chemical process configurations, is p... [more]
107. LAPSE:2021.0382
Optimal Sizing and Techno-Economic Analysis of Hybrid Renewable Energy Systems—A Case Study of a Photovoltaic/Wind/Battery/Diesel System in Fanisau, Northern Nigeria
May 17, 2021 (v1)
Subject: Energy Management
Keywords: break-even grid extension distance, Genetic Algorithm, greenhouse gas emissions analysis, hybrid renewable energy systems, Modelling, net present value, Nigeria, replacement project, rural electrification, simple payback period, simulation and optimization, sub-Saharan Africa, Technoeconomic Analysis
Hybrid Renewable Energy Systems (HRESs) have been touted as an appropriate way for supplying electricity to remote and off-grid areas in developing countries, especially in sub-Saharan Africa (SSA), where rural electrification challenges are the most pronounced. This study proposes a two-step methodology for optimizing and analyzing a stand-alone photovoltaic/wind/battery/diesel hybrid system to meet the electricity needs of Fanisua, an off-grid and remote village of northern Nigeria. In the first step, the MATLAB environment was used to run simulations and optimize the system via the genetic algorithm. Then, techno-economic and emissions analysis was carried out in the second step to compare the proposed system to the existing traditional modes of rural electrification in sub-Saharan Africa, namely, the grid-extension and diesel generator. The break-even distance parameter was adopted in the comparison with grid-extension. Besides, the hypothetical project of replacing the diesel gene... [more]
108. LAPSE:2021.0381
Non-Alcoholic and Craft Beer Production and Challenges
May 17, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: brewing, craft beer, dealcoholization, flavour, non-alcoholic beer
Beer is the most consumed alcoholic beverage in the world and the third most popular beverage after water and tea. Emerging health-oriented lifestyle trends, demographics, stricter legislation, religious prohibitions, and consumers’ preferences have led to a strong and steady growth of interest for non-alcoholic beers (NABs), low-alcohol beers (LABs), as well for craft beers (CBs). Conventional beer, as the worlds most consumed alcoholic beverage, recently gained more recognition also due to its potential functionality associated with the high content of phenolic antioxidants and low ethanol content. The increasing attention of consumers to health-issues linked to alcohol abuse urges breweries to expand the assortment of conventional beers through novel drinks concepts. The production of these beers employs several techniques that vary in performance, efficiency, and usability. Involved production technologies have been reviewed and evaluated in this paper in terms of efficiency and pr... [more]
109. LAPSE:2021.0380
Effect of Drying and Steeping Temperatures on the Phenolic Content, Antioxidant Activity, Aromatic Compounds and Sensory Properties of Cunila polyantha Benth. Infusions
May 17, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: Cunila polyantha, green tea, high-performance liquid chromatography, response surface methodology, sensory evaluation, volatile organic compounds
Cunila polyantha Benth. (Lamiaceae), an aromatic plant endemic to Mexico, is used in traditional medicine as tea infusions. In this study, the effects of different drying and steeping temperatures on the phenolic content and composition, antioxidant activity, volatile composition, and sensory properties of C. polyantha infusions were determined. Commercial green tea (Camellia sinensis L. Kuntze) was used as a control. The phenolic compounds identified in the C. polyantha infusions by high-performance liquid chromatography (HPLC) include phenolic acids such as gallic acid, chlorogenic acid, caffeic acid, and p-coumaric acid, flavonoids such as epigallocatechin gallate, protocatechin, quercetin, and naringenin, as well as the phenolic aldehyde vanillin. The C. polyantha infusions showed scavenging activity of DPPH• and ABTS•+ radicals as well as relevant antioxidant capacity, which was dependent on tea preparation conditions. A total of 46 volatile organic compounds (VOCs) were detected... [more]
110. LAPSE:2021.0379
Mixing in Turbulent Flows: An Overview of Physics and Modelling
May 17, 2021 (v1)
Subject: Modelling and Simulations
Keywords: FDF method, large eddy Simulations, Mixing, PDF method, Reynolds-averaged Navier–Stokes, scalar variables, turbulence
Turbulent flows featuring additional scalar fields, such as chemical species or temperature, are common in environmental and industrial applications. Their physics is complex because of a broad range of scales involved; hence, efficient computational approaches remain a challenge. In this paper, we present an overview of such flows (with no particular emphasis on combustion, however) and we recall the major types of micro-mixing models developed within the statistical approaches to turbulence (the probability density function approach) as well as in the large-eddy simulation context (the filtered density function). We also report on some trends in algorithm development with respect to the recent progress in computing technology.