Browse
Recent Submissions
New records verified within the last 120 days
Showing records 176 to 200 of 263. [First] Page: 4 5 6 7 8 9 10 11 Last
Study on Brittleness Characteristics and Fracturing Crack Propagation Law of Deep Thin-Layer Tight Sandstone in Longdong, Changqing
Changjing Zhou, Zhonghua Sun, Yuanxiang Xiao, Guopeng Huang, Dan Kuang, Minghui Li
January 12, 2024 (v1)
Keywords: brittleness characteristics, fracture propagation, hydraulic fracturing, tight sandstone, triaxial compression
Tight-sandstone oil and gas resources are the key areas of unconventional oil and gas resources exploration and development. Because tight-sandstone reservoirs usually have the characteristics of a low porosity and ultralow permeability, large-scale hydraulic fracturing is often required to form artificial fractures with a high conductivity to achieve efficient development. The brittleness of rock is the key mechanical factor for whether fracturing can form a complex fracture network. Previous scholars have carried out a lot of research on the brittleness characteristics of conglomerate and shale reservoirs, but there are few studies on the brittleness characteristics of sandstone with different types and different coring angles in tight-sandstone reservoirs and the fracture propagation law of sandstone with different brittleness characteristics. Based on this, this paper carried out a systematic triaxial compression and hydraulic fracturing experiment on the tight sandstone of Shan 1... [more]
Synergistic Catalysis of Reservoir Minerals and Exogenous Catalysts on Aquathermolysis of Heavy Oil
Yunlei Zang, Huaizhu Liu, Dong Chen, Shu Zhang, Shanjian Li, Gang Chen
January 12, 2024 (v1)
Subject: Materials
Keywords: catalytic aquathermolysis, heavy oil, reservoir minerals, synergistic
In this study, based on existing heavy oil extraction technology, combined with the mineral composition in a reservoir, the synergistic catalytic effect of reservoir minerals and exogenous catalysts under the reaction system of a hydrogen-rich environment not only reduces the viscosity of thick oil but also reduces the extraction cost and further improves the recovery rate of heavy oil. In this study, the impacts of different reservoir minerals and exogenous catalysts on the aquathermolysis of heavy oil were investigated. The research results showed that the sodium montmorillonite within the reservoir minerals exhibited an optimal catalytic effect, and the synergistic catalytic effect of sodium montmorillonite and catalyst C-Fe (catechol iron) resulted in a viscosity reduction rate of 60.47%. Furthermore, the efficiency of different alcohols as hydrogen donors was screened, among which ethanol had the best catalytic effect. Under the optimal reaction conditions, the viscosity reduction... [more]
An Improved Dual Second-Order Generalized Integrator Phased-Locked Loop Strategy for an Inverter of Flexible High-Voltage Direct Current Transmission Systems under Nonideal Grid Conditions
Lai Peng, Zhichao Fu, Tao Xiao, Yang Qian, Wei Zhao, Cheng Zhang
January 12, 2024 (v1)
Keywords: DC bias, flexible DC transmission, harmonic voltage, PLL, power quality, unbalance voltage
High-voltage flexible power systems, with their intrinsic characteristics, play an increasingly important role in electronic power systems. Synchronization between the inverter and the grid needs to be achieved by a phase-locked loop (PLL), the performance of which determines the quality of power transmission. This paper proposes a PLL adapted to extremely harsh grid conditions. Firstly, the traditional synchronous reference frame PLL and the dual second-order generalized integrator (DSOGI-PLL) are analyzed, and the errors in phase-locking and the shortcomings of these two methods in the presence of DC components in the grid are pointed out. Secondly, based on the harmonic grid voltage, a repetitive control internal model is introduced by DSOGI to realize the real-time tracking and regulation of the harmonic signals in order to suppress the harmonic voltage disturbance. In addition, a DC bias elimination and frequency adaptive method is proposed to solve the problems of DC bias and gri... [more]
Comprehensive Evaluation Index System and Application of Low-Carbon Resilience of Power Grid Containing Phase-Shifting Transformer under Ice Disaster
Jing Zhang, Huilin Cheng, Peng Yang, Bingyan Zhang, Shiqi Zhang, Zhigang Lu
January 12, 2024 (v1)
Keywords: fuzzy comprehensive evaluation, ice disaster, low-carbon resilience indicators, phase-shifting transformer
In view of the high impact of extreme disasters, this paper comprehensively evaluates power grid performance from a new low-carbon toughness perspective. First, considering the increase in carbon emissions and the recovery time of carbon emissions, low-carbon resilience indicators are proposed. At the same time, considering the power-regulation effect of the phase-shifter transformer, the fault and response model of a power grid under an ice disaster is established, and then, a comprehensive evaluation index system of low-carbon toughness of the power grid is constructed. The weight determination is carried out using the fuzzy analytic hierarchy process-entropy-based weight method, while the fuzzy comprehensive evaluation center of gravity method is used to evaluate the power grid comprehensively. Finally, examples are presented to verify the feasibility of the proposed method, emphasizing its potential for evaluating the comprehensive performance of low-carbon and toughness of the pow... [more]
Energy-Saving Testing System for a Coal Mine Emulsion Pump Using the Pressure Differential Flow Characteristics of Digital Relief Valves
Jie Tian, Wenchao Liu, Hongyao Wang, Xiaoming Yuan, Rulin Zhou, Junshi Li
January 12, 2024 (v1)
Keywords: digital relief valve, emulsion pump, energy saving testing, flow control, water-based hydraulic system
Most energy-saving testing methods for plunger pumps use hydraulic motors. The loading test of coal mine emulsion pumps generally uses an overflow valve as the loading unit, which is characterized by high energy consumption. The coal mine emulsion pump uses emulsion as the transmission medium, and the viscosity and lubricity of the emulsion are much lower than those of hydraulic oil, which creates great difficulties in the development of high water-based hydraulic products. The nominal flow rate of the emulsion motor is much smaller than that of the emulsion pump, and there is no mature and reliable water-based flow control valve. Based on the above reasons, traditional energy-saving testing methods cannot be utilized for the testing process of emulsion pumps. The loading test of emulsion pumps generally uses an overflow valve as the loading unit, and during the testing process, all electrical energy is converted into internal energy, resulting in very high energy consumption. This art... [more]
Cu2O-Electrodeposited TiO2 Photoelectrode for Integrated Solar Redox Flow Battery
Zihan Zhang, Ping Lu, Zixing Gu, Qiang Ma, Zhizhong Guo, Huaneng Su, Qian Xu
January 12, 2024 (v1)
Keywords: Cu2O, electrodeposition, integrated solar redox flow battery, photoelectrode, TiO2
TiO2 photoelectrode has become an attractive platform due to its excellent photoelectric performance and has been widely used in battery, photocatalysis, and other photoelectric fields. However, when the TiO2 photoelectrode is used in solar flow batteries, the small photo-charging current is a potential problem, which will extend the charging process and lower the battery utilization efficiency. To address this issue, Cu2O is introduced to the surface of the TiO2 photoelectrode, and Cu2O-TiO2 forms a heterojunction to improve battery performance in this work. The formation mechanism of Cu2O-TiO2 is revealed and utilized to deposit Cu2O on pre-treated FTO glass covered with TiO2 films using electrochemical deposition (ECD). The photoelectrochemical properties of Cu2O-TiO2 photoelectrodes are characterized using XRD, UV-vis diffuse reflectance spectroscopy, XPS, and electrochemical characterizations. The successful deposition of Cu2O on the surface of TiO2 photoelectrode is confirmed, an... [more]
Judgment Basis and Mechanical Analysis of Current Collector Failure in the Winding Process of a Lithium-Ion Battery
Yuxin Zhang, Chunhui Zhao, Xiaozhong Du, Jianjun Zhao, Yijian Hu
January 12, 2024 (v1)
Keywords: circumferential strain, current collector, failure criterion, lithium-ion battery, mechanical property
The winding process is one of the essential processes in the manufacturing of lithium-ion batteries (LIBs). Current collector failure frequently occurs in the winding process, which severely increases the production cost and reduces production efficiency. In order to solve this problem, we first analyze the relationship between different process parameters and the failure of the current collector, and put forward the standard to determine the failure of the current collector. Moreover, we conducted tensile experiments to validate the differences in the mechanical performance of the current collector under different thicknesses. Finally, the circumferential stress and strain of the current collector winding were calculated using finite element analysis. The accuracy of the proposed criterion for determining current collector failure was verified through experimental measurements of stress and strain. The results demonstrate that the criterion proposed in this study can accurately calcul... [more]
Three-Dimensional Printing Technologies in Oral Films Manufacturing—A Minireview
Emma Adriana Ozon, Iulian Sarbu, Violeta Popovici, Mirela Adriana Mitu, Adina Magdalena Musuc, Oana Karampelas, Bruno Stefan Velescu
January 12, 2024 (v1)
Subject: Biosystems
Keywords: 3D inkjet printing, active pharmaceutical ingredients, buccal drug delivery, extrusion-based 3D printing methods, liquid crystal display 3D printing, oral films, personalized medicine, Polymers
The interest in buccal drug delivery is under consideration due to some distinct properties compared to the traditional pharmaceutical formulations for oral administration: significantly higher bioavailability, a faster absorption rate of the drug, and substantial compliance for special needs patients. Oral films are obtained through various technologies, from conventional tools to 3D and 4D printing approaches. This minireview aims to describe the current additive manufacturing technologies in oral film fabrication, display their advantages and limitations, and discuss various formulation strategies. It also provides advanced data regarding synthetic and natural polymers used in 3D printing technologies for oral films. Moreover, it shows the most recent studies with 3D-printed orodispersible films and mucoadhesive buccal films manufactured through previously analyzed methods. Finally, conclusions and future perspectives are also briefly summarized.
The Analysis of Hydraulic Fracture Morphology and Connectivity under the Effect of Well Interference and Natural Fracture in Shale Reservoirs
Shuangming Li, Huan Zhao, Tian Cheng, Jia Wang, Jingming Gai, Linhao Zou, Tiansu He
January 12, 2024 (v1)
Keywords: fracture connectivity, fracture morphology, horizontal well, natural fracture, well interference
Employing multi-stage fracturing technology in horizontally accessed wells is a well-known way to successfully develop shale reservoirs. The interaction between natural fractures and hydraulic fractures has a significant impact on the fracturing effect. In this study, a coupled model of rock deformation and fluid flow was established using the cohesive zone method to simulate the propagation of hydraulic fractures under the synergistic effect of natural fractures and wellbore interference. The influence of in situ stress, fracture spacing, the number of fracture clusters, and the fracturing methods on the formation of fracture networks was analyzed. Studies on the fracture morphology and connectivity of fracture networks show that when the in situ stress difference is small, multiple fractures can easily form, and when the in situ stress difference is large, they can easily gather into a single fracture. An excessive reduction in fracture spacing may impede the optimal propagation and... [more]
Study of the Optimization of Rail Pressure Characteristics in the High-Pressure Common Rail Injection System for Diesel Engines Based on the Response Surface Methodology
Ruichuan Li, Wentao Yuan, Jikang Xu, Lin Wang, Feng Chi, Yong Wang, Shuqiang Liu, Jianghai Lin, Qingguang Zhang, Lanzheng Chen
January 12, 2024 (v1)
Keywords: average rail pressure, average rail pressure fluctuation, diesel engines, high-pressure common rail, response surface methodology
This paper establishes a mathematical model of the high-pressure common rail injection system used in diesel engines according to the parameters of its key components, and AMESim 2020 software was used to establish a simulation model of the common rail injection system used in diesel engines. The simulation model mainly includes a high-pressure oil pump model, a common rail pipe model, and a model of four injectors. This paper also describes an experimental analysis of the accuracy of the established simulation model. Through a simulation analysis of the system rail’s pressure fluctuation and pressure characteristics, it was concluded that the length of the common rail pipe, the diameter of the common rail pipe, and the inner diameter of the high-pressure fuel pipes are important influencing parameters for the rail pressure characteristics of the system. In this study, according to the original common rail pipe and high-pressure fuel pipe model, a response surface methodology was used... [more]
Design, Multi-Perspective Computational Investigations, and Experimental Correlational Studies on Conventional and Advanced Design Profile Modified Hybrid Wells Turbines Patched with Piezoelectric Vibrational Energy Harvester Devices for Coastal Regions
Janani Thangaraj, Senthil Kumar Madasamy, Parvathy Rajendran, Safiah Zulkifli, Rajkumar Rajapandi, Hussein A. Z. AL-bonsrulah, Beena Stanislaus Arputharaj, Hari Prasath Jeyaraj, Vijayanandh Raja
January 12, 2024 (v1)
Keywords: composite materials, Computational Fluid Dynamics, FEA, forced and free vibrations, FSI, hybrid energy, hydro-energy
This work primarily investigates the performance and structural integrity of the Wells turbines for power production in coastal locations and their associated unmanned vehicles. An innovative design procedure is imposed on the design stage of the Wells turbine and thus so seven different models are generated. In the first comprehensive investigation, these seven models underwent computational hydrodynamic analysis using ANSYS Fluent 17.2 for various coastal working environments such as hydro-fluid speeds of 0.34 m/s, 1.54 m/s, 12 m/s, and 23 m/s. After this primary investigation, the best-performing Wells turbine model has been imposed as the second comprehensive computational investigation for three unique design profiles. The imposed unique design profile is capable of enhancing the hydro-power by 15.19%. Two detailed, comprehensive investigations suggest the best Wells turbine for coastal location-based applications. Since the working environments are complicated, additional advance... [more]
Molecular Dynamics Calculation of the Coordination Behavior of Yb (III) in Sodium Carbonate Solution
Qiaofa Lan, Youming Yang, Ziyu Xie, Haoran Guo, Donghui Liu, Xiaolin Zhang
January 12, 2024 (v1)
Subject: Materials
Keywords: carbonate, coordination, density functional theory, molecular dynamics, Yb (III)
Yb (III) shows complex behavior of coordination dissolution and precipitation in carbonate solutions, but the properties of CO32− coordination and hydration to Yb (III) in the solution have not been explicated. In this work, the dissolution rule of Yb (III) with CO32− concentration has been studied. The radial distribution function and the coordination number of CO32− and H2O to Yb (III) were calculated by molecular dynamics simulation, and the complex ion form of Yb was obtained. The ultraviolet−visible spectrum and the ionic structures of Yb (III) complex ions were geometrically optimized and calculated by using density functional theory. Then, the experimental ultraviolet−visible spectra and density functional theory results were combined to verify the molecular dynamics calculations. The results indicate that Yb (III) undergoes precipitation in low-concentration carbonate solution, but, in high-concentration carbonate solution, Yb (III)’s carbonates will undergo dissolution. The ma... [more]
Unraveling Oxygen Transfer Behavior in Submerged Arc Welding Using CaF2-SiO2-CaO Fluxes
Jin Zhang, Jun Fan, Dan Zhang
January 12, 2024 (v1)
Keywords: flux, multi-zone model, oxygen content, oxygen transfer, submerged arc welding (SAW), thermodynamic equilibrium, weld metal composition, welding metallurgy
The purpose of this study is to investigate the transfer behavior of oxygen during the submerged arc welding process using CaF2-SiO2-CaO fluxes. In contrast to previous research that only focused on the final oxygen content in the final weld metal, this study introduces two new parameters, ΔdO and ΔwO, to quantify the oxygen transfer in essential regions: the droplet and weld pool zones, respectively. The transfer behavior of oxygen is analyzed by using typical Multi-Zone and equilibrium models. The results indicate that the Multi-Zone model is capable of capturing the metallurgical processes of oxidation and subsequent reduction during the submerged arc welding process. Moreover, the Multi-Zone model demonstrates superior predictive accuracy in estimating oxygen content in the metal compared to the equilibrium model. Based on measured values and metallurgical data, this article analyzes the oxygen transfer mechanism and non-equilibrium state in the submerged arc welding process from b... [more]
Multi-Objective Optimization of Kinetic Characteristics for the LBPRM-EHSPCS System
Yuhang Zhang, Gexin Chen, Guishan Yan, Boyuan Li, Jianxin Lu, Wenguang Jiang
January 12, 2024 (v1)
Keywords: dynamic characteristics, economic characteristics, efficiency characteristics, electro-hydraulic servo pump control system (EHSPCS), lithium-ion battery pole rolling mill (LBPRM), NSGA-II, optimum design
As the ‘heart’ of energy vehicles, the lithium-ion battery is in desperate need of precision improvement, green production, and cost reduction. To achieve this goal, the electro-hydraulic servo pump control system (EHSPCS) is applied to the lithium-ion battery pole rolling mill (LBPRM). However, this development can lead to limited dynamic performance and large power loss as a result of the EHSPCS unique volume direct-drive control mode. At present, how to solve this conflict has not been studied and how the EHSPCS component parameters influence the dynamic response, power loss, and economic performance is not clear. In this paper, a multi-objective optimization (MOO) model for the LBPRM-EHSPCS is proposed by comprehensively considering the dynamic, efficiency, and economic characteristics. Firstly, the evaluation model of the dynamic response, power loss, and cost is investigated. Then, the NSGA-II algorithm is introduced to address the Pareto front of the MOO model. Finally, the powe... [more]
Axial Force Calculation Model for Completion String with Multiple Point Resistances in Horizontal Well
Zhen Nie, Shuzhe Shi, Bohong Wu, Xueqin Huang
January 12, 2024 (v1)
Keywords: axial force, completion string, hook load, horizontal well, local resistance
Frequent accidents may happen during the string run-down and pull process due to the lack of accuracy in the prediction of string force analysis. In order to precisely predict the completion string axial force in horizontal wells, a new model is established, and an in-house software has been developed. The model aims to predict the multiple local resistances that occur at different points on the completion string, which makes up for the technical defects of the commonly used software. It can calculate resistance at different points of the string, which will lead to varying hook load amplification. This method can also predict the axial force of the completion string. By changing the hook load, location, and direction, the resistance can be determined more accurately. Based on the calculation and analysis, the relationship between local resistance, the blocking point, and the amplification factor is also obtained. Furthermore, this model is used to analyze the local resistance of a hori... [more]
Identification of an Antimicrobial Protease from Acanthamoeba via a Novel Zymogram
Alvaro de Obeso Fernández del Valle, Luis Javier Melgoza-Ramírez, María Fernanda Esqueda Hernández, Alfonso David Rios-Pérez, Sutherland K. Maciver
January 12, 2024 (v1)
Keywords: Acanthamoeba, antimicrobial, encystment, protease, zymogram
Proteases play a role in different processes for protozoans and for the free-living amoeba Acanthamoeba. Some of these processes are related to pathogenicity and to encystment. In this study we describe the discovery of a protease with antimicrobial activity produced by Acanthamoeba. To identify it, we developed a novel zymogram using bacteria as an in-gel substrate that can help identify proteins capable of bacterial degradation. We used chromatography to isolate the proteases and showed that it quickly degrades in the environment. Additionally, we identified overexpressed proteases during encystment. The study of proteases from Acanthamoeba can serve several purposes including new antimicrobial proteins that the amoeba can use for potentially predigesting prokaryotes. Secondly, it can help with the identification of potential new therapies against Acanthamoeba infection.
Risk Assessment of Coal Mine Gas Explosion Based on Fault Tree Analysis and Fuzzy Polymorphic Bayesian Network: A Case Study of Wangzhuang Coal Mine
Jinhui Yang, Jin Zhao, Liangshan Shao
January 12, 2024 (v1)
Keywords: coal mine gas explosion, fault tree analysis, fuzzy theory, polymorphic Bayesian network, risk assessment
The prevention and control of gas explosion accidents are important means to improving the level of coal mine safety, and risk assessment has a positive effect on eliminating the risk of gas explosions. Aiming at the shortcomings of current risk assessment methods in dynamic control, state expression and handling uncertainty, this study proposes a method combining fault tree analysis and fuzzy polymorphic Bayesian networks. The risk factors are divided into multiple states, the concept of accuracy is proposed to correct the subjectivity of fuzzy theory and Bayesian networks are relied on to calculate the risk probability and risk distribution in real time and to propose targeted prevention and control measures. The results show that the current risk probability of a gas explosion accident in Wangzhuang coal mine is as high as 35%, and among the risk factors, excessive ventilation resistance and spontaneous combustion of coal are sources of induced risk, and the sensitivity value of ele... [more]
Synthesis of Silver Nanoparticles: From Conventional to ‘Modern’ Methods—A Review
Ngoc Phuong Uyen Nguyen, Ngoc Tung Dang, Linh Doan, Thi Thu Hoai Nguyen
January 12, 2024 (v1)
Subject: Materials
Keywords: AgNPs, biological synthesis, chemical synthesis, physical synthesis, silver nanoparticles
Silver nanoparticles, also known as AgNPs, have been extensively researched due to their one-of-a-kind characteristics, including their optical, antibacterial, and electrical capabilities. In the era of the antibiotics crisis, with an increase in antimicrobial resistance (AMR) and a decrease in newly developed drugs, AgNPs are potential candidates because of their substantial antimicrobial activity, limited resistance development, and extensive synergistic effect when combined with other drugs. The effect of AgNPs depends on the delivery system, compound combination, and their own properties, such as shape and size, which are heavily influenced by the synthesis process. Reduction using chemicals or light, irradiation using gamma ray, laser, electron beams or microwave and biological synthesis or a combination of these techniques are notable examples of AgNP synthesis methods. In this work, updated AgNP synthesis methods together with their strength and shortcomings are reviewed. Furthe... [more]
An Electro-Hydraulic-Load-Sensitive System on the Basis of Torque Open-Loop Control
YanWen Li, Cong Yu, Gexin Chen, Mingkun Yang, Yuhang Zhang, Fei Wang
January 12, 2024 (v1)
Keywords: electric construction machinery, load sensitive, pressure control, torque control
Facing the development trend of electrification of construction machinery, in view of the drawbacks of the existing electro-hydraulic-load-sensitive system in terms of dynamic characteristics and usage of energy, based on the drive source of a servo motor-driven quantitative pump, an electro-hydraulic-load-sensitive system on the basis of torque open-loop control was proposed. Firstly, the working principle of the system was introduced and the system’s operating characteristics and energy consumption characteristics were theoretically analyzed. Secondly, in order to balance the system’s energy usage and maneuverability, a control strategy with a variable pressure margin was designed. Meanwhile, in order to solve the problem that the hydraulic pump’s mechanical efficiency causes system pressure control deviation, a torque compensation method based on offline data and speed prediction was proposed. Finally, simulation and testing were used to confirm the viability of the control strategy... [more]
The Improved Cytotoxic Capacity of Functionalized Nanodiamonds with Metformin in Breast and Ovarian Cancer Cell Lines
Lucero Evelia Acuña-Aguilar, Alain Salvador Conejo-Dávila, Mario Miki-Yoshida, Olga N. Hernández-de la Cruz, Gricelda Sánchez-Sánchez, César López-Camarillo, Joan Sebastian Salas-Leiva, Erasto Armando Zaragoza-Contreras, Reyna Reyes-Martínez, Erasmo Orrantia-Borunda
January 12, 2024 (v1)
Subject: Biosystems
Keywords: biguanide, breast cancer, functionalization, nanodiamonds, ovarian cancer
Nanodiamonds (ND-COOH) are used as drug delivery systems because of their attractive properties, as they allow for optimized transport of therapeutic agents in cellular models. Metformin (MET) is a drug used in diabetes mellitus therapy and exhibits anti-cancer properties. In this study, dispersed nanodiamonds were functionalized with metformin by directly binding them to 1,6-hexanediol (ND-MET), and their effects on the cytotoxicity of breast and ovarian cancer cells were evaluated in vitro. A simple synthesis of ND-MET was performed and characterized using FT-IR, XPS, Boehm titration, RAMAN, XDR, TEM, and dynamic light scattering (DLS). Data showed an increased intensity of the C-N bond band, indicating the presence of metformin in ND-MET. We detected signals at 1427 cm−1 and 1288 cm−1 corresponding to the C-N and C-H bonds, and adsorptions at 1061 cm−1 and 3208 cm−1 corresponding to the N-O and N-H bonds, respectively. The deconvolution of the C1s binding energy was also found at 28... [more]
A Timestep-Adaptive-Diffusion-Model-Oriented Unsupervised Detection Method for Fabric Surface Defects
Shancheng Tang, Zicheng Jin, Ying Zhang, Jianhui Lu, Heng Li, Jiqing Yang
January 12, 2024 (v1)
Keywords: computer vision, deep-learning-based unsupervised detection method, denoising diffusion probabilistic model, fabric defect detection, image repair
Defect detection is crucial in quality control for fabric production. Deep-learning-based unsupervised reconstruction methods have been recognized universally to address the scarcity of fabric defect samples, high costs of labeling, and insufficient prior knowledge. However, these methods are subject to several weaknesses in reconstructing defect images into defect-free images with high quality, like image blurring, defect residue, and texture inconsistency, resulting in false detection and missed detection. Therefore, this article proposes an unsupervised detection method for fabric surface defects oriented to the timestep adaptive diffusion model. Firstly, the Simplex Noise−Denoising Diffusion Probabilistic Model (SN-DDPM) is constructed to recursively optimize the distribution of the posterior latent vector, thus gradually approaching the probability distribution of surface features of the defect-free samples through multiple iterative diffusions. Meanwhile, the timestep adaptive mo... [more]
Exploring Bayesian Optimization for Photocatalytic Reduction of CO2
Yutao Zhang, Xilin Yang, Chengwei Zhang, Zhihui Zhang, An Su, Yuan-Bin She
January 12, 2024 (v1)
Subject: Optimization
Keywords: Bayesian optimization, design of experiment, Machine Learning, photocatalytic reduction, reaction optimization
The optimization of photocatalysis is complex, as heterogenous catalysis makes its kinetic modeling or design of experiment (DOE) significantly more difficult than homogeneous reactions. On the other hand, Bayesian optimization (BO) has been found to be efficient in the optimization of many complex chemical problems but has rarely been studied in photocatalysis. In this paper, we developed a BO platform and applied it to the optimization of three photocatalytic CO2 reduction systems that have been kinetically modeled in previous studies. Three decision variables, namely, partial pressure of CO2, partial pressure of H2O, and reaction time, were used to optimize the reaction rate. We first compared BO with the traditional DOE methods in the Khalilzadeh and Tan systems and found that the optimized reaction rates predicted by BO were 0.7% and 11.0% higher, respectively, than the best results of optimization by DOE, and were significantly better than the original experimental data, which we... [more]
Frequency and Inertial Response Analysis of Loads in The Chilean Power System
Juan Quiroz, Roberto Perez, Héctor Chávez, Carlos Fuentes, Matías Díaz, José Rodriguez
January 12, 2024 (v1)
Keywords: frequency measurement, frequency response, inertia, power systems, smart grids
The integration of power electronics-interconnected generation systems to the grid has fostered a significant number of concerns on power system operations, particularly on the displacement of synchronous generators that leads to a reduction in the grid’s overall inertia and frequency response. These concerns have raised a significant amount of state-of-the-art mathematical proposals on how to estimate system inertia; however, the majority of the proposals do not differentiate generator inertia from load inertia. When inertia prediction for control room applications is required in real-time, the current state-of-the-art proposals use the inertia of generators as a proxy for a minimum, overall inertia estimate, counting the number of units committed in real-time and adding up their inertia. However, as dynamic conditions are becoming challenging with the integration of power electronics-interconnected generation systems, it is important to quantify the amount of inertia from the loads,... [more]
Effect of Diethyl Ether on the Performance and Emission Characteristics of a Diesel Engine Fueled with a Light Fraction of Waste Cooking Oil
Aravind Samraj, Debabrata Barik, Metta Laxmi Deepak Bhatlu, Sachindra Kumar Rout, Badreddine Ayadi, Walid Aich, Ahmed Kadhim Hussein, Lioua Kolsi
January 12, 2024 (v1)
Keywords: diesel engine, diethyl ether (DEE), emission rate, light fraction waste cooking oil (LFWCO), performance characteristics
In this study, a diesel engine was used to operate with blends of light fraction waste cooking oil (LFWCO) with diethyl ether (DEE). DEE was blended as an additive in the 5% to 20% ratio in steps of 5% each. The test indicates that LFWCO+15-DEE produced optimum results regarding performance and emission. The BSFC for LFWCO+15-DEE was found to be higher by about 28.9%, and the BTE was lower by about 7.6%, in contrast to diesel, at 100% operating load, respectively. For LFWCO+15-DEE the EGT was lower by about 11.9%, in contrast to neat diesel, at 100% operating load. The various emissions such as carbon monoxide (CO), nitrous oxide (NO), and smoke opacity for LFWCO+15-DEE were found to be lower by about 32.9%, 25%, and 29.4%, but the NO release was more than other blends and it was about 36%, in contrast to diesel at 100% operating load, respectively.
Spatial Structure Characteristics of Underground Reservoir Water Storage Space in Coal Mines Considering Shape Characteristics of Crushed Rock
Xuan Qin, Zhiguo Cao, Lichang Wei, Peng Li, Hao Sun
January 12, 2024 (v1)
Subject: Other
Keywords: coal mine underground reservoir, fractal dimension, rigid block model, shape of crushed rock, storage coefficient, void network model
In order to investigate the impact of a crushed rock shape on the storage coefficient of underground reservoirs in coal mines, statistical analysis of the shape characteristics of crushed rocks was conducted, which was followed by numerical packing tests using the rigid block model. These tests aimed to investigate the spatial structure characteristics of underground reservoir water storage space in coal mines under the influence of different shapes of crushed rock. The results demonstrated the following: (1) Crushed rock exhibits a lognormal distribution in its shape characteristic parameters at different scales with a predominant discoid shape. The shape coefficient M can be utilized as a comprehensive indicator to characterize the shape characteristics of crushed rock. (2) The average storage coefficient of crushed rock increases exponentially as the shape coefficient M increases. There is a 50.1% increase in the storage coefficient from M = 1 to 3.5. (3) The spatial structure of th... [more]
Showing records 176 to 200 of 263. [First] Page: 4 5 6 7 8 9 10 11 Last