Records with Keyword: Artificial Intelligence
Showing records 180 to 204 of 204. [First] Page: 1 5 6 7 8 9 Last
The Role of Conventional Methods and Artificial Intelligence in the Wastewater Treatment: A Comprehensive Review
Wahid Ali Hamood Altowayti, Shafinaz Shahir, Norzila Othman, Taiseer Abdalla Elfadil Eisa, Wael M. S. Yafooz, Arafat Al-Dhaqm, Chan Yong Soon, Izzati Binti Yahya, Nur Anis Natasha binti Che Rahim, Mohammed Abaker, Abdulalem Ali
February 21, 2023 (v1)
Keywords: Adsorption, Artificial Intelligence, membrane, precipitation, water pollution
Water pollution is a severe health concern. Several studies have recently demonstrated the efficacy of various approaches for treating wastewater from anthropogenic activities. Wastewater treatment is an artificial procedure that removes contaminants and impurities from wastewater or sewage before discharging the effluent back into the environment. It can also be recycled by being further treated or polished to provide safe quality water for use, such as potable water. Municipal and industrial wastewater treatment systems are designed to create effluent discharged to the surrounding environments and must comply with various authorities’ environmental discharge quality rules. An effective, low-cost, environmentally friendly, and long-term wastewater treatment system is critical to protecting our unique and finite water supplies. Moreover, this paper discusses water pollution classification and the three traditional treatment methods of precipitation/encapsulation, adsorption, and membra... [more]
Digital Food Twins Combining Data Science and Food Science: System Model, Applications, and Challenges
Christian Krupitzer, Tanja Noack, Christine Borsum
February 21, 2023 (v1)
Keywords: Artificial Intelligence, digital twin, food processing, Industry 4.0, Machine Learning, self-aware computing systems
The production of food is highly complex due to the various chemo-physical and biological processes that must be controlled for transforming ingredients into final products. Further, production processes must be adapted to the variability of the ingredients, e.g., due to seasonal fluctuations of raw material quality. Digital twins are known from Industry 4.0 as a method to model, simulate, and optimize processes. In this vision paper, we describe the concept of a digital food twin. Due to the variability of the raw materials, such a digital twin has to take into account not only the processing steps but also the chemical, physical, or microbiological properties that change the food independently from the processing. We propose a hybrid modeling approach, which integrates the traditional approach of food process modeling and simulation of the bio-chemical and physical properties with a data-driven approach based on the application of machine learning. This work presents a conceptual fra... [more]
Environmental Benefits of Sleep Apnoea Detection in the Home Environment
Ragab Barika, Heather Elphick, Ningrong Lei, Hajar Razaghi, Oliver Faust
February 21, 2023 (v1)
Subject: Environment
Keywords: Artificial Intelligence, computer-aided diagnosis, polysomnography, remote monitoring, sleep apnoea
Sleep Apnoea (SA) is a common chronic illness that affects nearly 1 billion people around the world, and the number of patients is rising. SA causes a wide range of psychological and physiological ailments that have detrimental effects on a patient’s wellbeing. The high prevalence and negative health effects make SA a public health problem. Whilst the current gold standard diagnostic procedure, polysomnography (PSG), is reliable, it is resource-expensive and can have a negative impact on sleep quality, as well as the environment. With this study, we focus on the environmental impact that arises from resource utilisation during SA detection, and we propose remote monitoring (RM) as a potential solution that can improve the resource efficiency and reduce travel. By reusing infrastructure technology, such as mobile communication, cloud computing, and artificial intelligence (AI), RM establishes SA detection and diagnosis support services in the home environment. However, there are conside... [more]
Reinforcement Learning Control with Deep Deterministic Policy Gradient Algorithm for Multivariable pH Process
Chanin Panjapornpon, Patcharapol Chinchalongporn, Santi Bardeeniz, Ratthanita Makkayatorn, Witchaya Wongpunnawat
February 21, 2023 (v1)
Subject: Energy Policy
Keywords: Artificial Intelligence, deterministic deep policy gradient, grid search, pH control, reinforcement learning
The pH treatment unit is widely used in various processes, such as wastewater treatment, pharmaceutical manufacturing, and fermentation. It is essential to get the on-specifications product. Thus, controlling pH is key management for accomplishing the manufacturing objective. However, the highly nonlinear pH characteristics of acid−base titration make pH regulation difficult. Applications of artificial intelligence for process control have progressed and gained popularity recently. The development of reinforcement learning (RL) control with a deep deterministic policy gradient (DDPG) algorithm to handle coupled pH and liquid level control in a continuous stirred tank reactor with a strong acid−base reaction is presented in this study. To validate the RL model, the reward functions are created individually for the level and pH controls. The grid search technique is deployed to optimize the hyperparameters of the RL controller models, including the number of nodes in the hidden layers an... [more]
Introducing the Effective Features Using the Particle Swarm Optimization Algorithm to Increase Accuracy in Determining the Volume Percentages of Three-Phase Flows
Tzu-Chia Chen, Seyed Mehdi Alizadeh, Marwan Ali Albahar, Mohammed Thanoon, Abdullah Alammari, John William Grimaldo Guerrero, Ehsan Nazemi, Ehsan Eftekhari-Zadeh
February 21, 2023 (v1)
Keywords: Artificial Intelligence, feature extraction, frequency domain, MLP neural network, PSO, volume fraction, wavelet
What is presented in this research is an intelligent system for detecting the volume percentage of three-phase fluids passing through oil pipes. The structure of the detection system consists of an X-ray tube, a Pyrex galss pipe, and two sodium iodide detectors. A three-phase fluid of water, gas, and oil has been simulated inside the pipe in two flow regimes, annular and stratified. Different volume percentages from 10 to 80% are considered for each phase. After producing and emitting X-rays from the source and passing through the pipe containing a three-phase fluid, the intensity of photons is recorded by two detectors. The simulation is introduced by a Monte Carlo N-Particle (MCNP) code. After the implementation of all flow regimes in different volume percentages, the signals recorded by the detectors were recorded and labeled. Three frequency characteristics and five wavelet transform characteristics were extracted from the received signals of each detector, which were collected in... [more]
Is Industry 5.0 a Human-Centred Approach? A Systematic Review
Joel Alves, Tânia M. Lima, Pedro D. Gaspar
February 21, 2023 (v1)
Keywords: Artificial Intelligence, cyber-physical systems, digitalization, human-centred, human-centricity, I5.0 technologies, Industry 5.0, robotics
Industry 5.0 presents itself as a strategy that puts the human factor at the centre of production, where the well-being of the worker is prioritized, as well as more sustainable and resilient production systems. For human centricity, it is necessary to empower human beings and, respectively, industrial operators, to improve their individual skills and competences in collaboration or cooperation with digital technologies. This research’s main purpose and distinguishing point are to determine whether Industry 5.0 is truly human-oriented and how human centricity can be created with Industry 5.0 technologies. For that, this systematic literature review article analyses and clarifies the concepts and ideologies of Industry 5.0 and its respective technologies (Artificial Intelligence, Robotics, Human-robot collaboration, Digitalization), as well as the strategies of human centricity, with the aim of achieving sustainable and resilient systems, especially for the worker.
Comparative Performance of Machine-Learning and Deep-Learning Algorithms in Predicting Gas−Liquid Flow Regimes
Noor Hafsa, Sayeed Rushd, Hazzaz Yousuf
February 21, 2023 (v1)
Keywords: Artificial Intelligence, Modelling, multiphase flow, pipeline, prediction
Gas−liquid flow is a significant phenomenon in various engineering applications, such as in nuclear reactors, power plants, chemical industries, and petroleum industries. The prediction of the flow patterns is of great importance for designing and analyzing the operations of two-phase pipeline systems. The traditional numerical and empirical methods that have been used for the prediction are known to result in a high inaccuracy for scale-up processes. That is why various artificial intelligence-based (AI-based) methodologies are being applied, at present, to predict the gas−liquid flow regimes. We focused in the current study on a thorough comparative analysis of machine learning (ML) and deep learning (DL) in predicting the flow regimes with the application of a diverse set of ML and DL frameworks to a database comprising 11,837 data points, which were collected from thirteen independent experiments. During the pre-processing, the big data analysis was performed to analyze the correla... [more]
Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit
Elçin Yeşiloğlu Cevher, Demet Yıldırım
February 21, 2023 (v1)
Subject: Environment
Keywords: Artificial Intelligence, environmental condition, rupture energy, soft computing technique
In the study, rupture energy values of Deveci and Abate Fetel pear fruits were predicted using artificial neural network (ANN). This research aimed to develop a simple, accurate, rapid, and economic model for harvest/post-harvest loss of efficiently predicting rupture energy values of Deveci and Abate Fetel pear fruits. The breaking energy of the pears was examined in terms of storage time and loading position. The experiments were carried out in two stages, with samples kept in cold storage immediately after harvest and 30 days later. Rupture energy values were estimated using four different single and multi-layer ANN models. Four different model results obtained using Levenberg−Marquardt, Scaled Conjugate Gradient, and resilient backpropagation training algorithms were compared with the calculated values. Statistical parameters such as R2, RMSE, MAE, and MSE were used to evaluate the performance of the methods. The best-performing model was obtained in network structure 5-1 that used... [more]
Autonomous Surveillance for an Indoor Security Robot
Min-Fan Ricky Lee, Zhih-Shun Shih
February 20, 2023 (v1)
Keywords: Artificial Intelligence, deep learning, face recognition, mobile robots, object detection, simultaneous localization and mapping
Conventional surveillance for a security robot suffers from severe limitations, perceptual aliasing (e.g., different places/objects can appear identical), occlusion (e.g., place/object appearance changes between visits), illumination changes, significant viewpoint changes, etc. This paper proposes an autonomous robotic system based on CNN (convolutional neural network) to perform visual perception and control tasks. The visual perception aims to identify all objects moving in the scene and to verify whether the target is an authorized person. The visual perception system includes a motion detection module, a tracking module, face detection, and a recognition module. The control system includes motion control and navigation (path planning and obstacle avoidance). The empirical validation includes the evaluation metrics, such as model speed, accuracy, precision, recall, ROC (receiver operating characteristic) curve, P-R (precision−recall) curve, F1-score for AlexNet, VggNet, and GoogLeNe... [more]
Review of Latest Advances in Nature-Inspired Algorithms for Optimization of Activated Sludge Processes
Malini Deepak, Rabee Rustum
February 17, 2023 (v1)
Subject: Optimization
Keywords: activated sludge process, Artificial Intelligence, bio-inspired algorithms, computational intelligence, evolutionary algorithms, nature-inspired algorithms, Optimization, swarm intelligence, wastewater treatment
The activated sludge process (ASP) is the most widely used biological wastewater treatment system. Advances in research have led to the adoption of Artificial Intelligence (AI), in particular, Nature-Inspired Algorithm (NIA) techniques such as Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) to optimize treatment systems. This has aided in reducing the complexity and computational time of ASP modelling. This paper covers the latest NIAs used in ASP and discusses the advantages and limitations of each algorithm compared to more traditional algorithms that have been utilized over the last few decades. Algorithms were assessed based on whether they looked at real/ideal treatment plant (WWTP) data (and efficiency) and whether they outperformed the traditional algorithms in optimizing the ASP. While conventional algorithms such as Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) were found to be successfully employed in optimizatio... [more]
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing
Bruno Silva, Ruben Marques, Dinis Faustino, Paulo Ilheu, Tiago Santos, João Sousa, André Dionisio Rocha
February 17, 2023 (v1)
Subject: Materials
Keywords: Artificial Intelligence, Data Augmentation, Human-in-the-Loop labeling, injection molding, OEE, predictive quality
With the spread of the Industry 4.0 concept, implementing Artificial Intelligence approaches on the shop floor that allow companies to increase their competitiveness in the market is starting to be prioritized. Due to the complexity of the processes used in the industry, the inclusion of a real-time Quality Prediction methodology avoids a considerable number of costs to companies. This paper exposes the whole process of introducing Artificial Intelligence in plastic injection molding processes in a company in Portugal. All the implementations and methodologies used are presented, from data collection to real-time classification, such as Data Augmentation and Human-in-the-Loop labeling, among others. This approach also allows predicting and alerting with regard to process quality loss. This leads to a reduction in the production of non-compliant parts, which increases productivity and reduces costs and environmental footprint. In order to understand the applicability of this system, it... [more]
Predicting the Potency of Anti-Alzheimer’s Drug Combinations Using Machine Learning
Thomas J. Anastasio
October 31, 2022 (v1)
Subject: Other
Keywords: Alzheimer’s disease, Artificial Intelligence, artificial neural network, drug combination, drug repurposing, Machine Learning, multifactorial disorder, neurodegeneration, polypharmacy
Clinical trials of single drugs intended to slow the progression of Alzheimer’s Disease (AD) have been notoriously unsuccessful. Combinations of repurposed drugs could provide effective treatments for AD. The challenge is to identify potentially effective combinations. To meet this challenge, machine learning (ML) was used to extract the knowledge from two leading AD databases, and then “the machine” predicted which combinations of the drugs in common between the two databases would be the most effective as treatments for AD. Specifically, three-layered artificial neural networks (ANNs) with compound, gated units in their internal layer were trained using ML to predict the cognitive scores of participants, separately in either database, given other data fields including age, demographic variables, comorbidities, and drugs taken. The predictions from the separately trained ANNs were statistically highly significantly correlated. The best drug combinations, jointly determined from both s... [more]
Integration of Artificial Intelligence into Biogas Plant Operation
Samet Cinar, Senem Onen Cinar, Nils Wieczorek, Ihsanullah Sohoo, Kerstin Kuchta
October 14, 2021 (v1)
Keywords: anaerobic digestion, Artificial Intelligence, automation, biogas plant, predictive monitoring, process monitoring, process optimization
In the biogas plants, organic material is converted to biogas under anaerobic conditions through physical and biochemical processes. From supply of the raw material to the arrival of the products to customers, there are serial processes which should be sufficiently monitored for optimizing the efficiency of the whole process. In particular, the anaerobic digestion process, which consists of sequential complex biological reactions, requires improved monitoring to prevent inhibition. Conventional implemented methods at the biogas plants are not adequate for monitoring the operational parameters and finding the correlation between them. As Artificial Intelligence has been integrated in different areas of life, the integration of it into the biogas production process will be inevitable for the future of the biogas plant operation. This review paper first examines the need for monitoring at the biogas plants with giving details about the process and process monitoring as well. In the follow... [more]
Real-Time 3D Printing Remote Defect Detection (Stringing) with Computer Vision and Artificial Intelligence
Konstantinos Paraskevoudis, Panagiotis Karayannis, Elias P. Koumoulos
May 27, 2021 (v1)
Keywords: 3D printing, additive manufacturing, Artificial Intelligence, computer vision, neural network
This work describes a novel methodology for the quality assessment of a Fused Filament Fabrication (FFF) 3D printing object during the printing process through AI-based Computer Vision. Specifically, Neural Networks are developed for identifying 3D printing defects during the printing process by analyzing video captured from the process. Defects are likely to occur in 3D printed objects during the printing process, with one of them being stringing; they are mostly correlated to one of the printing parameters or the object’s geometries. The defect stringing can be on a large scale and is usually located in visible parts of the object by a capturing camera. In this case, an AI model (Deep Convolutional Neural Network) was trained on images where the stringing issue is clearly displayed and deployed in a live environment to make detections and predictions on a video camera feed. In this work, we present a methodology for developing and deploying deep neural networks for the recognition of... [more]
Processing, Characteristics and Composition of Umqombothi (a South African Traditional Beer)
Edwin Hlangwani, Janet Adeyinka Adebiyi, Wesley Doorsamy, Oluwafemi Ayodeji Adebo
May 26, 2021 (v1)
Keywords: Artificial Intelligence, bioprocessing, health, local beer, safety, South Africa, umqombothi
Traditional beers, such as palm wine, kombucha and others, are notable beverages consumed all over the globe. Such beverages historically contribute to food security on a global scale. Umqombothi is a South African traditional beer nutritionally packed with minerals, amino acids, B-group vitamins and much-needed calories. As a result, the production and consumption of this traditional beverage has been an integral part of South African’s social, economic and cultural prosperity. Unfortunately, difficulties in bioprocessing operations have limited its availability to household and small-scale production. It is at these micro-production scales that poor hygiene practices and the use of hazardous additives and contaminated raw materials continue to increase, posing serious health risks to the unassuming consumer. This study provides an overview of the processing steps and underlying techniques involved in the production of umqombothi, while highlighting the challenges as well as future de... [more]
Performance Evaluation for a Sustainable Supply Chain Management System in the Automotive Industry Using Artificial Intelligence
Oana Dumitrascu, Manuel Dumitrascu, Dan Dobrotǎ
May 24, 2021 (v1)
Keywords: Artificial Intelligence, data mining, key performance indicator, neural network, performance evaluation, risk management
Increasing the sustainability of a system can be achieved by evaluating the system, identifying the issues and their root cause and solving them. Performance evaluation translates into key performance indicators (KPIs) with a high impact on increasing overall efficacy and efficiency. As the pool of KPIs has increased over time in the context of evaluating the supply chain management (SCM) system’s performance and assessing, communicating and managing its risks, a mathematical model based on neural networks has been developed. The SCM system has been structured into subsystems with the most relevant KPIs for set subsystems and their most important contributions on the increase in the overall SCM system performance and sustainability. As a result of the performed research based on the interview method, the five most relevant KPIs of each SCM subsystem and the most relevant problems are underlined. The main goal of this paper is to develop a performance evaluation model that links specifi... [more]
Review of Artificial Intelligence Applied in Decision-Making Processes in Agricultural Public Policy
Juan M. Sánchez, Juan P. Rodríguez, Helbert E. Espitia
May 17, 2021 (v1)
Keywords: agriculture, Artificial Intelligence, decision making, policy formulation, public policy
The objective of this article is to review how Artificial Intelligence (AI) tools have helped the process of formulating agricultural public policies in the world. For this, a search process was carried out in the main scientific repositories finding different publications. The findings have shown that, first, the most commonly used AI tools are agent-based models, cellular automata, and genetic algorithms. Secondly, they have been utilized to determine land and water use, and agricultural production. In the end, the large usefulness that AI tools have in the process of formulating agricultural public policies is concluded.
Mesoporous Mn-Doped Fe Nanoparticle-Modified Reduced Graphene Oxide for Ethyl Violet Elimination: Modeling and Optimization Using Artificial Intelligence
Yu Hou, Jimei Qi, Jiwei Hu, Yiqiu Xiang, Ling Xin, Xionghui Wei
June 23, 2020 (v1)
Subject: Materials
Keywords: Artificial Intelligence, ethyl violet, gradient boosted regression trees, mesoporous materials, Mn-doped Fe/rGO nanocomposites
Mesoporous Mn-doped Fe nanoparticle-modified reduced graphene oxide (Mn-doped Fe/rGO) was prepared through a one-step co-precipitation method, which was then used to eliminate ethyl violet (EV) in wastewater. The prepared Mn-doped Fe/rGO was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy, energy dispersive spectroscopy, N2-sorption, small angle X-ray diffraction and superconducting quantum interference device. The Brunauer−Emmett−Teller specific surface area of Mn-doped Fe/rGO composites was 104.088 m2/g. The EV elimination by Mn-doped Fe/rGO was modeled and optimized by artificial intelligence (AI) models (i.e., radial basis function network, random forest, artificial neural network genetic algorithm (ANN-GA) and particle swarm optimization). Among these AI models, ANN-GA is considered as the best model for predicting the removal efficiency of EV by Mn-doped Fe/rGO... [more]
Machine Learning-Based Prediction of a BOS Reactor Performance from Operating Parameters
Alireza Rahnama, Zushu Li, Seetharaman Sridhar
May 22, 2020 (v1)
Keywords: Artificial Intelligence, BOS reactor, Machine Learning, neural network, steelmaking
A machine learning-based analysis was applied to process data obtained from a Basic Oxygen Steelmaking (BOS) pilot plant. The first purpose was to identify correlations between operating parameters and reactor performance, defined as rate of decarburization (dc/dt). Correlation analysis showed, as expected a strong positive correlation between the rate of decarburization (dc/dt) and total oxygen flow. On the other hand, the decarburization rate exhibited a negative correlation with lance height. Less obviously, the decarburization rate, also showed a positive correlation with temperature of the waste gas and CO2 content in the waste gas. The second purpose was to train the pilot-plant dataset and develop a neural network based regression to predict the decarburization rate. This was used to predict the decarburization rate in a BOS furnace in an actual manufacturing plant based on lance height and total oxygen flow. The performance was satisfactory with a coefficient of determination o... [more]
Day-Ahead Prediction of Microgrid Electricity Demand Using a Hybrid Artificial Intelligence Model
Yuan-Jia Ma, Ming-Yue Zhai
August 5, 2019 (v1)
Keywords: Artificial Intelligence, electricity demand, feedforward artificial neural network, forecasting, microgrid, simulated annealing, smart grid, wavelet transform
Improved-performance day-ahead electricity demand forecast is important to deliver necessary information for right decision of energy management of microgrids. It supports microgrid operators and stakeholders to have better decisions on microgrid flexibility, stability and control. The available conventional forecasting methods for electricity demand at national or regional level are not effective for electricity demand forecasting in microgrids. This is due to the fact that the electricity consumption in microgrids is many times less than the regional or national demands and it is highly volatile. In this paper, an integrated Artificial Intelligence (AI) based approach consisting of Wavelet Transform (WT), Simulated Annealing (SA) and Feedforward Artificial Neural Network (FFANN) is devised for day-ahead prediction of electric power consumption in microgrids. The FFANN is the basic forecasting engine of the proposed model. The WT is utilized to extract relevant features of the target... [more]
Performance Analysis of Data-Driven and Model-Based Control Strategies Applied to a Thermal Unit Model
Cihan Turhan, Silvio Simani, Ivan Zajic, Gulden Gokcen Akkurt
July 26, 2019 (v1)
Keywords: advanced control design, Artificial Intelligence, model-based and data-driven approaches, modelling and simulation for control, thermal unit nonlinear system
The paper presents the design and the implementation of different advanced control strategies that are applied to a nonlinear model of a thermal unit. A data-driven grey-box identification approach provided the physically⁻meaningful nonlinear continuous-time model, which represents the benchmark exploited in this work. The control problem of this thermal unit is important, since it constitutes the key element of passive air conditioning systems. The advanced control schemes analysed in this paper are used to regulate the outflow air temperature of the thermal unit by exploiting the inflow air speed, whilst the inflow air temperature is considered as an external disturbance. The reliability and robustness issues of the suggested control methodologies are verified with a Monte Carlo (MC) analysis for simulating modelling uncertainty, disturbance and measurement errors. The achieved results serve to demonstrate the effectiveness and the viable application of the suggested control solution... [more]
Ultrasonic-Assisted Extraction and Swarm Intelligence for Calculating Optimum Values of Obtaining Boric Acid from Tincal Mineral
Bahdisen Gezer, Utku Kose
April 15, 2019 (v1)
Keywords: Artificial Intelligence, boric acid, central composite design, Optimization, swarm intelligence, tincal, ultrasound assisted extraction
The objective of this study is to focus on boric acid extraction from the mineral tincal, in order to determine the optimum conditions thanks to the ultrasonic-assisted extraction (UAE) technique (with the response surface methodology (RSM) for the first time), and artificial intelligence based swarm intelligence. Characterization of the tincal were done by using thermo-gravimetric assay (TG-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. In detail, a central composite design (CCD) was used for determining the effects of different solvent/solid ratios, pH, extraction time, and extraction temperature on the yield, which was determined by the conductometric method. The optimum values regarding the best extraction process was calculated by using five different swarm intelligence techniques: Particle swarm optimization (PSO), cuckoo search (CS), genetic algorithms (GA), Differential evolution (DE), and the vortex optimization algorithm (VOA). In... [more]
Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions
Abdullahi Abubakar Mas’ud, Ricardo Albarracín, Jorge Alfredo Ardila-Rey, Firdaus Muhammad-Sukki, Hazlee Azil Illias, Nurul Aini Bani, Abu Bakar Munir
January 7, 2019 (v1)
Keywords: Artificial Intelligence, artificial neural network (ANN), partial discharge (PD)
In order to investigate how artificial neural networks (ANNs) have been applied for partial discharge (PD) pattern recognition, this paper reviews recent progress made on ANN development for PD classification by a literature survey. Contributions from several authors have been presented and discussed. High recognition rate has been recorded for several PD faults, but there are still many factors that hinder correct recognition of PD by the ANN, such as high-amplitude noise or wide spectral content typical from industrial environments, trial and error approaches in determining an optimum ANN, multiple PD sources acting simultaneously, lack of comprehensive and up to date databank of PD faults, and the appropriate selection of the characteristics that allow a correct recognition of the type of source which are currently being addressed by researchers. Several suggestions for improvement are proposed by the authors include: (1) determining the optimum weights in training the ANN; (2) usin... [more]
Deep Learning to Forecast Solar Irradiance Using a Six-Month UTSA SkyImager Dataset
Ariana Moncada, Walter Richardson Jr, Rolando Vega-Avila
September 21, 2018 (v1)
Keywords: all-sky imaging, Artificial Intelligence, decision tree learning, deep learning, optical flow, solar irradiance forecasting
Distributed PV power generation necessitates both intra-hour and day-ahead forecasting of solar irradiance. The UTSA SkyImager is an inexpensive all-sky imaging system built using a Raspberry Pi computer with camera. Reconfigurable for different operational environments, it has been deployed at the National Renewable Energy Laboratory (NREL), Joint Base San Antonio, and two locations in the Canary Islands. The original design used optical flow to extrapolate cloud positions, followed by ray-tracing to predict shadow locations on solar panels. The latter problem is mathematically ill-posed. This paper details an alternative strategy that uses artificial intelligence (AI) to forecast irradiance directly from an extracted subimage surrounding the sun. Several different AI models are compared including Deep Learning and Gradient Boosted Trees. Results and error metrics are presented for a total of 147 days of NREL data collected during the period from October 2015 to May 2016.
Deterministic Global Optimization with Artificial Neural Networks Embedded
Global deterministische Optimierung von Optimierungsproblemen mit künstlichen neuronalen Netzwerken
Artur M Schweidtmann, Alexander Mitsos
October 15, 2018 (v2)
Subject: Optimization
Artificial neural networks (ANNs) are used in various applications for data-driven black-box modeling and subsequent optimization. Herein, we present an efficient method for deterministic global optimization of ANN embedded optimization problems. The proposed method is based on relaxations of algorithms using McCormick relaxations in a reduced-space [\textit{SIOPT}, 20 (2009), pp. 573-601] including the convex and concave envelopes of the nonlinear activation function of ANNs. The optimization problem is solved using our in-house global deterministic solver MAiNGO. The performance of the proposed method is shown in four optimization examples: an illustrative function, a fermentation process, a compressor plant and a chemical process optimization. The results show that computational solution time is favorable compared to the global general-purpose optimization solver BARON.
Showing records 180 to 204 of 204. [First] Page: 1 5 6 7 8 9 Last
[Show All Keywords]