Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Browse
Keywords
Records with Keyword: Petroleum Coke
Purification Methods for Captured CO2 from Petroleum Coke Oxy-Combustion Power Plants
Tia Ghantous, Ikenna J Okeke, Thomas A Adams II
October 21, 2021 (v2)
Keywords: Carbon Dioxide Capture, eco-technoeconomic analysis, oxy-combustion, Petroleum Coke
We present eco-technoeconomic analyses of four processes, including two novel designs, for the purification of captured CO2 from flue gas for a petroleum coke (petcoke) oxy-combustion power plant operated with carbon capture and sequestration (CCS). A base case petcoke oxy-combustion design obtained from a previous study consisting of flue gas water removal using condensation was used in this study. Other purification processes evaluated consist of a cryogenic distillation petcoke oxy-combustion with CCS, an oxygen deficient petcoke oxy-combustion with CCS and a catalytic dehydration petcoke oxy-combustion via hydrogen conversion with CCS. An eco-technoeconomic analysis considering greenhouse gas (GHG) emissions, levelized cost of electricity (LCOE), thermal efficiency and CO2 product purity to meet pipe-line specifications, was conducted on all purification candidates. This revealed that base case design did not meet the CO2 pipeline specifications. The highest LCOE was attributed to... [more]
Design Strategies for Oxy-Combustion Power Plant Captured CO2 Purification
Ikenna J. Okeke, Tia Ghantous, Thomas A. Adams II
June 28, 2021 (v1)
Keywords: Aspen Plus, Carbon Dioxide Capture, CO2 Purification, Oxy-combustion, Petroleum Coke
This submission contains Aspen Plus files for the design and systems performance analysis of oxy-combustion power plant captured CO2 purification using different techniques.
Comprehensive Environmental Impact Assessment of a Combined Petroleum Coke and Natural Gas to Fischer-Tropsch Diesel Process
Thomas A. Adams II
March 13, 2020 (v1)
Subject: Other
In this study, a well-to-wheels life cycle assessment was conducted to determine the environmental impacts from disposing of petroleum coke by converting it into liquid fuel. Specifically, three processes for converting petroleum coke and natural gas to Fischer Tropsch diesel were investigated, both with and without carbon capture and sequestration (CCS). Impact categories were calculated using the EPA’s TRACI 2.1 US-Canada 2008 midpoint method in SimaPro software. In addition, the impact of grid emissions on the overall process was assessed using two representative Canadian locations with high (Alberta) and low (Ontario) grid emissions. The results of each impact category were compared among the designs and against conventional petroleum and oil-sands derived diesel. Key findings showed that the proposed designs when operated using CCS in the low-emissions-grid location had lower life cycle GHG emissions than conventional petroleum and oil-sands derived diesel. Nevertheless, the vario... [more]
Systems Design of a Petroleum Coke IGCC Power Plant: Technical, Economic, and Life cycle Perspectives
Ikenna Joseph Okeke, Thomas A Adams II
July 12, 2019 (v1)
Keywords: Carbon Dioxide Capture, Electricity, Gasification, IGCC, Life Cycle Analysis, Petroleum Coke
The petroleum coke gasification integrated gasification combined cycle power plant (petcoke-IGCC) is a promising avenue for disposal of the ever-growing amount of stockpiled petroleum coke. In this work, we present a novel techno-economic and life cycle assessment of the process operated with carbon capture and sequestration. The proposed petcoke-to-electricity plant is designed and simulated in Aspen Plus v10. The proposed power plant was compared against coal integrated gasification combined cycle (coal-IGCC) and supercritical pulverized coal power plants operated with carbon capture and sequestration. The results showed that although the efficiency of the coal-IGCC plant is higher than the petcoke-IGCC plant, the higher energy density of the petcoke and lower resource costs were such that the levelized cost of electricity of petcoke-IGCC was lower than coal-IGCC. Furthermore, the feed flow rate of petcoke to the petcoke-IGCC process is approximately 15% lower than the coal feed rate... [more]
Techno-Economic Analysis of Combining Petroleum Coke and Natural Gas for Efficient Liquid Fuels Production
Ikenna Joseph Okeke, Thomas A Adams II
October 30, 2018 (v1)
Waste petcoke can be converted to liquid fuels instead of stockpiling which reduces the net CO2 emission by displacing additional petroleum usage. In this study, three petcoke to liquid fuels designs were compared based on the following performance criteria: conversion efficiency, economics, and environmental impacts. The designs considered were petcoke gasification only, a combination of natural gas reforming and petcoke gasification, and natural gas reforming integrated in the petcoke gasification step. The processes were modeled and simulated using a combination of Aspen Plus v10, ProMax, and gProms software. Each of the configurations were designed to operate with and without carbon capture and sequestration (CCS) technology along with a corresponding carbon emission penalty. Performance metrics analyzed were the net present value, minimum diesel selling price, cost of CO2 avoided, and cradle to plant exit gate life cycle greenhouse gas emissions. From the analysis, the integration... [more]
Combining Petroleum Coke and Natural Gas for Efficient Liquid Fuels Production
Ikenna J Okeke, Thomas A Adams II
August 28, 2018 (v1)
This work explores the technical feasibility and economic profitability of converting petroleum coke (petcoke) and natural gas to liquid fuels via Fischer-Tropsch synthesis. Different petcoke conversion strategies were examined to determine the conversion pathway which can be competitive with current market prices with little or no adverse environmental impacts. Three main design approaches were considered: petcoke gasification only, combined petcoke gasification and natural gas reforming through traditional processing steps, and combined petcoke gasification and natural gas reforming by directly integrating the gasifier’s radiant cooler with the gas reformer. The designs investigated included scenarios with and without carbon capture and sequestration, and with and without CO2 emission tax penalties. The performance metrics considered included net present value, life cycle greenhouse gas emissions, and the cost of CO2 avoided. The design configuration that integrated natural gas refor... [more]
Petroleum coke and Natural gas-To-Liquids Aspen Plus Simulation
Ikenna J Okeke, Thomas A Adams II
July 19, 2018 (v1)
Keywords: Aspen Plus, Fischer-Tropsch Synthesis, Integrated Reforming, Petroleum Coke
Six Aspen Plus simulation files for the conversion of petroleum coke and/or natural gas to liquid fuels (synthetic gasoline and diesel) are presented. The base simulation files were designed with carbon capture and sequestration (CCS) technology with the corresponding plant without CCS.

The processes may include various technologies such as petcoke gasification, integrated gasification and autothermal natural gas reforming, gas cleaning, water gas shift reaction, MDEA based carbon capture, Claus process, FT synthesis, and other processing steps.

The six processes are: PSG_CCS (petcoke standalone gasification with CCS), PSG_No_CCS (petcoke standalone gasification without CCS), PG-INGR_CCS (petcoke gasification integrated natural gas reformer with CCS), PG-INGR_No_CCS (petcoke gasification integrated natural gas reformer without CCS), PG-ENGR_CCS (petcoke gasification external natural gas reformer with CCS), PG-ENGR_No_CCS (petcoke gasification external natural gas reformer with... [more]
[Show All Keywords]