Browse
Records Added in 2020
Records added in 2020
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025
Filter by month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 989 to 1013 of 1263. [First] Page: 1 37 38 39 40 41 42 43 44 45 Last
Mass Spectral Fragmentation of Pelargonium graveolens Essential Oil Using GC−MS Semi-Empirical Calculations and Biological Potential
Mamoun S. M. Abd El-Kareem, Mohamed A. Rabbih, Hosam O. Elansary, Fahed A. Al-Mana
March 12, 2020 (v1)
Subject: Materials
Keywords: antibacterial, antifungal, essential oils, gas chromatography-mass spectrometry, Pelargonium graveolens, semi-empirical calculations
The volatile constituents of the essential oil of local Pelargonium graveolens growing in Egypt was investigated by gas chromatography−mass spectrometry (GC−MS), and the main constituents were citronellol (27.67%), cis-Menthone (10.23%), linalool (10.05%), eudesmol (9.40%), geraniol formate 6.87%, and rose oxide (5.77%), which represent the major components in the obtained GC total ion chromatogram. The structural determination of the main constitutes based on their electron ionization mass spectra have been investigated. The MS of these compounds are absolutely identical in mass values of peaks of fragment ions, where their relative intensities have minor differences. In the spectra of all studied compounds, the observed characteristic ions were [M-H2O]+ and [M-CH3]+. The latter has a structure with m/z 69, 83. Different quantum parameters were obtained using Modified Neglect of Diatomic Overlap (MNDO) semi-empirical method as total energy, binding energy, heat of formations, ionizati... [more]
Estimation of Ice Cream Mixture Viscosity during Batch Crystallization in a Scraped Surface Heat Exchanger
Alejandro De la Cruz Martínez, Rosa E. Delgado Portales, Jaime D. Pérez Martínez, José E. González Ramírez, Alan D. Villalobos Lara, Anahí J. Borras Enríquez, Mario Moscosa Santillán
March 11, 2020 (v1)
Keywords: crystallization, ice-cream, Modelling, scraped surface heat exchanger, viscosity
Ice cream viscosity is one of the properties that most changes during crystallization in scraped surface heat exchangers (SSHE), and its online measurement is not easy. Its estimation is necessary through variables that are easy to measure. The temperature and power of the stirring motor of the SSHE turn out to be this type of variable and are closely related to the viscosity. Therefore, a mathematical model based on these variables proved to be feasible. The development of this mathematical relationship involved the rheological study of the ice cream base, as well as the application of a method for its in situ melting in the rheometer as a function of the temperature, and the application of a mathematical model correlating the SSHE stirring power and the ice cream viscosity. The result was a coupled model based on both the temperature and stirring power of the SSHE, which allowed for online viscosity estimation with errors below 10% for crystallized systems with a 30% ice fraction at... [more]
Neural Differentiation Dynamics Controlled by Multiple Feedback Loops in a Comprehensive Molecular Interaction Network
Tsuyoshi Iwasaki, Ryo Takiguchi, Takumi Hiraiwa, Takahiro G. Yamada, Kazuto Yamazaki, Noriko F. Hiroi, Akira Funahashi
March 11, 2020 (v1)
Subject: Biosystems
Keywords: feedback regulation, mathematical models, neural differentiation, signaling pathway
Mathematical model simulation is a useful method for understanding the complex behavior of a living system. The construction of mathematical models using comprehensive information is one of the techniques of model construction. Such a comprehensive knowledge-based network tends to become a large-scale network. As a result, the variation of analyses is limited to a particular kind of analysis because of the size and complexity of the model. To analyze a large-scale regulatory network of neural differentiation, we propose a contractive method that preserves the dynamic behavior of a large network. The method consists of the following two steps: comprehensive network building and network reduction. The reduction phase can extract network loop structures from a large-scale regulatory network, and the subnetworks were combined to preserve the dynamics of the original large-scale network. We confirmed that the extracted loop combination reproduced the known dynamics of HES1 and ASCL1 before... [more]
A Practical Unified Algorithm of P-IMC Type
Vasile Cirtoaje
March 11, 2020 (v1)
Keywords: compensated process, discrete-time algorithm, online tuning, practical unified algorithm, process feedback gain, proportional-internal model control (P-IMC), settling time, step control principle, tuning gain
The paper presents a practical algorithm of the proportional-internal model control (P-IMC) type that can be applied to control a wide class of processes: Stable proportional processes, integral processes and some unstable processes. The P-IMC algorithm is a suitable combination between the P0-IMC algorithm and the P1-IMC algorithm, which are characterized by a too weak and a too strong impact of the tuning gain on the control action, respectively. The overall controller has five parameters: A tuning parameter K, three model parameters (steady-state gain, settling time, and time delay) and a process feedback gain used only for integral or unstable processes, to turn them into a compensated process (stable and of proportional type). For a step setpoint, the initial value of the compensated process input is approximately K times its final value. Furthermore, for K = 1 , the compensated process input is close to a step shape (step control principle). These properties enable a human... [more]
Quality-Relevant Monitoring of Batch Processes Based on Stochastic Programming with Multiple Output Modes
Feifan Shen, Jiaqi Zheng, Lingjian Ye, De Gu
March 11, 2020 (v1)
Keywords: bagging algorithm, batch processes, Bayesian fusion, data-driven modeling, quality-relevant monitoring, stochastic programming
To implement the quality-relevant monitoring scheme for batch processes with multiple output modes, this paper presents a novel methodology based on stochastic programming. Bringing together tools from stochastic programming and ensemble learning, the developed methodology focuses on the robust monitoring of process quality-relevant variables by taking the stochastic nature of batch process parameters explicitly into consideration. To handle the problem of missing data and lack of historical batch data, a bagging approach is introduced to generate individual quality-relevant sub-datasets, which are used to construct the corresponding monitoring sub-models. For each model, stochastic programming is used to construct an optimal quality trajectory, which is regarded as the reference for online quality monitoring. Then, for each sub-model, a corresponding control limit is obtained by computing historical residuals between the actual output and the optimal trajectory. For online monitoring,... [more]
Designing Hydrogen and Oxygen Flow Rate Control on a Solid Oxide Fuel Cell Simulator Using the Fuzzy Logic Control Method
Darjat, Sulistyo, Aris Triwiyatno, Sudjadi, Andra Kurniahadi
March 11, 2020 (v1)
Keywords: flow, pressure, simulator, SOFC, voltage
A solid oxide fuel cell (SOFC) is an electrochemical cell that converts chemical energy into electrical energy by oxidizing fuel. SOFC has high efficiency and cleans oxidation residues. Research has shown the importance of SOFC control. Voltage output control is needed because of nonlinearity, slow dynamics, and proper SOFC operating restrictions. This study aims to design an SOFC simulator with output voltage control to optimize the flow rate of fuel (hydrogen) and air (oxygen). This SOFC simulator is designed based on a microcontroller model. The controller is designed using the fuzzy logic method. Tests show that the output voltage can approach the set point with an average of 340.6 volts. The pressure difference (∆Pressure) between the two gases averaged 4428 Pa, and the fuel/gas flow rate was in the range of 0.7 mol/s. The controller can correct both the output voltage of the SOFC simulator and the difference in gas pressure under 8106 Pa (0.08 atm).
Integration of Prognostics and Control of an Oil/CO2 Subsea Separation System
Lucas Ferreira Bernardino, André Felipe Ferreira de Souza, Argimiro Resende Secchi, Maurício Bezerra de Souza Jr., Anne Barros
March 11, 2020 (v1)
Keywords: equipment reliability, predictive control, remaining useful lifetime, statistic inference, subsea processing
The exploitation of reserves with a high CO2 content is challenging because of the need for its separation and the environmental impact associated with its generation. In this context, a suitable use for the generated CO2 is its reinjection into the reservoir, and subsea CO2 separation improves the efficiency of this process. The main objective of this work is to investigate the health-aware control of a subsea CO2 separation system. Previously identified linear models were used in a predictive controller with Kalman filter-based state estimation and online model update, and simulations were performed to evaluate the controller tuning. Regarding prognostics, a stochastic model of pump degradation, sensitive to its operating conditions, was proposed, and a particle filter was implemented to perform online degradation state estimation and remaining useful lifetime prediction. Finally, a health-aware controller was designed, which could extend the life of the process by four months when c... [more]
Quality Control for Medium Voltage Insulator via a Knowledge-Informed SPSA Based on Historical Gradient Approximations
Xiangsong Kong, Jiaming Guo, Dongbin Zheng, Ji Zhang, Wei Fu
March 11, 2020 (v1)
Keywords: historical gradient approximations, knowledge-informed, medium voltage insulator, quality control, SPSA
Medium voltage insulators are essential and versatile components in electrical engineering. Quality control of the manufacturing process for the insulators has a significant role in their economic production and reliable operation. As the quality of medium voltage insulator is mainly affected by the process parameters of the automatic pressure gelation process (APG), the optimal process settings are required to achieve a satisfactory quality target. However, traditional process parameters’ optimization methods are often cumbersome and cost-consuming. Moreover, the operational cost of APG for insulator production is relatively high. Therefore, the determination of the optimal settings becomes a significant challenge for the quality control of insulators. To address the above issues, an idea of knowledge-informed optimization was proposed in this study. Based on the above idea, a knowledge-informed simultaneous perturbation stochastic approximation (SPSA) methodology was formulated to re... [more]
Manipulation of Culture Conditions: Tool for Correlating/Improving Lipid and Carotenoid Production by Rhodotorula glutinis
Nora Elfeky, Mostafa Elmahmoudy, Yongming Bao
March 11, 2020 (v1)
Subject: Biosystems
Keywords: carotenoid, lipid, metal, nile-red fluorescence dye, NiSO4, Rhodotorula glutinis, unsaturated fatty acid
The coproduction of lipid and carotenoid by red yeasts in one cycle is more convenient and economical for the industrial sectors, while the kinetics correlation between both products under different culture conditions has been scarcely studied. This study is aiming to correlate the impact of different carbon sources, carbon to phosphorus ratio (C/P), temperature, aeration, pH, and metals on dry cell weight, lipid (GC and fluorescence microscope), and carotenoid (HPLC) production by Rhodotorula glutinis, and applying a novel feeding approach using a 5 L bioreactor to enhance carotenoid and unsaturated fatty acid production by R. glutinis. Whatever the culture condition is, the reversible correlation between lipid and carotenoid production was detected. Remarkably, when adding 0.1 mM BaCl2, cellular lipid was significantly increased 14% more than the control, with 79.3% unsaturated fatty acid (46% C18:2 and C18:3) and 50% γ-carotene, while adding 1 mM NiSO4, cellular carotenoid was enhan... [more]
Effects of Different Softening Processes on the Hardness and Quality of Thawed Neritic Squid (Uroteuthis edulis) Muscle
Mark J. Grygier, Yu-Wen Fan, Wen-Chieh Sung
March 11, 2020 (v1)
Subject: Biosystems
Keywords: bromelain, food for seniors, neritic squid, palatability, papain, tenderization
While attempting to develop a soft, seafood-based product as a potential food item for senior citizens, we evaluated the effects of different softening methods on the hardness and quality of thawed muscular mantle tissue of the neritic squid (Uroteuthis edulis) versus controls. Comparisons were made among injection with proteolytic enzymes (papain, bromelain); soaking in these enzymes or in alkali solutions (NaHCO3, NaOH); various soaking regimes combined with either orbital shaking under vacuum, ultrasonic processing, or ultrasonic cleaning; or hot-air drying and rehydration. Elderly panelists’ sensory impressions of thawed and heat-sterilized squid mantle subjected to these treatments were recorded, together with the total volatile basic nitrogen (TVBN), pH, color, protein breakdown profile (SDS-PAGE), and histological characteristics of thawed squid mantle subjected to the same treatments but not heat-sterilized. TVBN measurements showed that squid mantle remained in a close-to-fres... [more]
Parametric Dimensional Analysis on a C-H2 Smelting Reduction Furnace with Double-Row Side Nozzles
Jinyin Xie, Bo Wang, Jieyu Zhang
March 11, 2020 (v1)
Keywords: C-H2 smelting reduction furnace, dimensional analysis, double-row side nozzles, mixing time, multiple linear regression
Higher requirements for steel smelting technology have been put forward based on the increasing awareness of energy conservation and environmental protection. In the field of iron making, carbon reduction processes are often used. In this study, molten iron was smelted by designing a C-H2 smelting reduction method. Although previous researchers have studied this through a large number of physical and numerical simulations, they have not yet refined general laws from the perspective of dimensional analysis. In this paper, a double-row side blow hydraulics simulation was carried out in the C-H2 smelting reduction furnace, and an entire list of dimensionless groups of input and output parameters was proposed based on its hydraulics simulation data. The expressions between the dimensionless group of mixing time and dimensionless groups such as Capillary number (Ca) and Lagrange group (La1) were obtained by multiple linear regression based on the experimental research results and data analy... [more]
Comparison of Steel Manufacturing Off-Gas Utilization Methods via Life Cycle Analysis
Lingyan Deng, Thomas Adams
March 4, 2020 (v1)
Subject: Other
Keywords: Blast furnace gas, Coke oven gas, Combined cycle power plant, Life Cycle Analysis, Methanol production, SimaPro
This is a submission of source file of the life cycle analysis of steel manufacturing off-gas utilization systems using SimaPro V9. It includes five locations: Ontario, the USA, Finland, Mexico, and China.
Study of Ground Heat Exchangers in the Form of Parallel Horizontal Pipes Embedded in the Ground
Krzysztof Neupauer, Sebastian Pater, Krzysztof Kupiec
February 24, 2020 (v1)
Keywords: heat transfer, horizontal ground heat exchanger, linear heat source model, renewable energy sources
In order to predict long-term changes in the temperature of the ground in which a horizontal ground heat exchanger has been installed, it is beneficial to implement simplified mathematical models of heat transfer. The possibility of using a one-dimensional equation of heat conduction while modelling heat transfer in a ground heat exchanger with horizontal pipes has been demonstrated in the work. A theoretical analysis based on the linear heat source model as well as experimental research works have been carried out. It has been concluded that the temperature profiles of the ground in which parallel pipes of the heat exchanger are placed do not significantly differ from the profiles for the heat exchanger in the form of a plate; in particular, this refers to large distances from the level in which the pipes are positioned, small distances between pipes axes and the long duration of the process. Discrepancies between the calculated temperature increases for pipe and plate exchangers vari... [more]
Identification and Quantification of Volatile Compounds Found in Vinasses from Two Different Processes of Tequila Production
Elizabeth Rodríguez-Félix, Silvia Maribel Contreras-Ramos, Gustavo Davila-Vazquez, Jacobo Rodríguez-Campos, Erika Nahomy Marino-Marmolejo
February 24, 2020 (v1)
Subject: Materials
Keywords: dark fermentative, inhibitors, stillage, tequila, volatile compounds
Vinasses are the main byproducts of ethanol distillation and distilled beverages worldwide and are generated in substantial volumes. Tequila vinasses (TVs) could be used as a feedstock for biohydrogen production through a dark fermentative (DF) process due to their high content of organic matter. However, TV components have not been previously assayed in order to evaluate if they may dark ferment. This work aimed to identify and quantify volatile compounds (VC) in TV and determine if the VC profile depends upon the type of production process (whether the stems were initially cooked or not). TVs were sampled from 3 agave stems with a not-cooking (NC) process, and 3 agave stems with a cooking (C) process, and volatile compounds were determined by gas chromatography coupled with mass spectrometry (GC⁻MS). A total of 111 volatile compounds were identified, the TV from the cooking process (C) showed the higher presence of furanic compounds (furfural and 5-(hydroxymethyl) furfural) and organ... [more]
A Comparison of Thermal Models for Temperature Profiles in Gas-Lift Wells
Langfeng Mu, Qiushi Zhang, Qi Li, Fanhua Zeng
February 24, 2020 (v1)
Keywords: gas lift, governing equation, temperature profile, wellbore profile
Gas lift is a simple, reliable artificial lift method which is frequently used in offshore oil field developments. In order to enhance the efficiency of production by gas lift, it is vital to exactly predict the distribution of temperature-field for fluid within the wellbore. A new mechanistic model is developed for computing flowing fluid temperature profiles in both conduits simultaneously for a continuous-flow gas-lift operation. This model assumes steady heat transfer in the formation, as well as steady heat transfer in the conduits. A micro-units discrete from the wellbore, whose heat transfer process is analyzed and whose heat transfer equation is set up according to the law of conservation of energy. A simplified algebraic solution to our model is conducted to analyze the temperature profile. Sensitivity analysis was conducted with the new model. The results indicate that mass flow rate of oil and the tubing overall heat transfer coefficient are the main factors that influence t... [more]
Remote Power Control Injection of Grid-Connected Power Converters Based on Virtual Flux
Nurul Fazlin Roslan, Alvaro Luna, Joan Rocabert, Jose Ignacio Candela, Pedro Rodriguez
February 24, 2020 (v1)
Keywords: LCL-filter, proportional resonant current controller, remote point, virtual flux estimation, voltage sensorless, voltage source converter
Renewable Energy Source (RES)-based power plants need to control the active and reactive power at the Point of Common Connection (PCC) with the grid, in order to comply with the requirements of the Transmission System Operators (TSOs). This point is normally far away from the power converter station, and the cables and step-up transformers have a non-neglectable influence on the delivered power. In order to overcome this drawback, this paper presents a control algorithm that permits one to control remotely the power injected at the PCC, by adjusting the local controller of the Voltage Source Converters (VSCs). In this work, the synchronization with the grid is done based on the Virtual Flux (VF) concept. The results reveals that the VF estimation is able to produce a reliable estimation of the grid voltage in any point of the network, and makes it possible to calculate the necessary current reference for injecting a desired active and reactive power at a point that can be some kilometr... [more]
Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers
Xiaobo Wang, Chao Tang, Bo Huang, Jian Hao, George Chen
February 24, 2020 (v1)
Subject: Materials
Keywords: electrical properties, mineral insulating oil, molecular dynamics simulation, power transformer
In November 2017, the first ±1100 kV high-voltage direct-current power transformer in the world, which was made by Siemens in Nurnberg, passed its type test. Meanwhile, in early 2017, a ±1000 kV ultra-high voltage (UHV) substation was officially put into operation in Tianjin, China. These examples illustrate that the era of UHV power transmission is coming. With the rapid increase in power transmission voltage, the performance requirements for the insulation of power transformers are getting higher and higher. The traditional mineral oils used inside power transformers as insulating and cooling agents are thus facing a serious challenge to meet these requirements. In this review, the basic properties of traditional mineral insulating oil are first introduced. Then, the variation of electrical properties such as breakdown strength, permittivity, and conductivity during transformer operation and aging is summarized. Next, the modification of mineral insulating oil is investigated with a... [more]
Robust Condition Assessment of Electrical Equipment with One Class Support Vector Machines Based on the Measurement of Partial Discharges
Emilio Parrado-Hernández, Guillermo Robles, Jorge Alfredo Ardila-Rey, Juan Manuel Martínez-Tarifa
February 24, 2020 (v1)
Keywords: early fault prevention, electrical asset monitoring, noise characterization, One Class Support Vector Machines (OCSVM), partial discharge discrimination
This paper presents a system for the detection of partial discharges (PD) in industrial applications based on One Class Support Vector Machines (OCSVM). The study stresses the detection of Partial Discharges (PD) as they represent a major source of information related to degradation in the equipment. PD measurement is a widely extended technique for condition monitoring of electrical machines and power cables to avoid catastrophic failures and the consequent blackouts. One of the most important keystones in the interpretation of partial discharges is their separation from other signals considered as not-PD especially in low SNR measurements. In this sense, the OCSVM is an interesting alternative to binary SVMs since it does not need a training set with examples of all the output classes correctly labelled. On the contrary, the OCSVM learns a model of the signals acquired when the equipment is in PD-free mode, defined as a state where no degradation mechanism is active, so one only need... [more]
Hypothesis Tests-Based Analysis for Anomaly Detection in Photovoltaic Systems in the Absence of Environmental Parameters
Silvano Vergura
February 24, 2020 (v1)
Keywords: ANOVA, Bartlett’s test, Hartigan’s dip test, Jarque-Bera’s test, Kruskal-Wallis’ test, Mood’s Median test, residential buildings, Tukey’s test, urban context
This paper deals with the monitoring of the performance of a photovoltaic plant, without using the environmental parameters such as the solar radiation and the temperature. The main idea is to statistically compare the energy performances of the arrays constituting the PV plant. In fact, the environmental conditions affect equally all the arrays of a small-medium-size PV plant, because the extension of the plant is limited, so any comparison between the energy distributions of identical arrays is independent of the solar radiation and the cell temperature, making the proposed methodology very effective for PV plants not equipped with a weather station, as it often happens for the PV plants located in urban contexts and having a nominal peak power in the 3÷50 kWp range, typically installed on the roof of a residential or industrial building. In this case, the costs of an advanced monitoring system based on the environmental data are not justified, consequently, the weather station is of... [more]
Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses
Eunjong Kim, Seunghun Lee, Hyeonsoo Jo, Jihyeon Jeong, Walter Mulbry, Shafiqur Rhaman, Heekwon Ahn
February 24, 2020 (v1)
Subject: Other
Keywords: biogas, dairy manure, methane, moisture content, solid-state anaerobic digestion
Bedded pack manure has long been considered an unsuitable feedstock for conventional anaerobic digestion systems due to its high solids content. However, solid-state anaerobic digestion (SS-AD) provides an opportunity to generate methane from such high-solids feedstocks. This study was conducted to determine the influence of moisture content on the digestion of bedded pack dairy manure using SS-AD. Mixtures of sawdust bedding and dairy manure were prepared with moisture contents (MCs) of 70, 76, and 83% and digested at 37 °C for 85 days. The performance of digesters containing manure at 83% MC was 1.3 to 1.4-fold higher than that of digesters containing 70% MC manure in terms of volatile solids (VS) reduction and biogas production. VS reduction rates were 55 to 75% and cumulative methane yield ranged from 64 to 90 NmL (gVS)−1. These values are lower than those from SS-AD of fresh manure and this is likely due to the partial decomposition of biodegradable materials during the two to thr... [more]
A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India
Rachana Vidhi, Prasanna Shrivastava
February 24, 2020 (v1)
Subject: Energy Policy
Keywords: electric vehicle, emissions, India, policy, pollution, transportation electrification, vehicle to grid (V2G)
Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030. This policy is based on vehicle grid interaction and relies on shared mobility through the electric vehicle fleet. There are several human behavioral changes necessary to achieve 100% adoption of electric vehicles. This paper reviews different steps in the lifecycle of an electric vehicle (EV), their impact on environmental emissions, and recommends policies suitable for different socio-economic group that are relevant to the Indian market. To reduce air pollution through adoption of electric vehi... [more]
An Improved Interval Fuzzy Modeling Method: Applications to the Estimation of Photovoltaic/Wind/Battery Power in Renewable Energy Systems
Nguyen Gia Minh Thao, Kenko Uchida
February 24, 2020 (v1)
Keywords: automatic-tuning scheme, boundary points, interval fuzzy modeling, linear programming, lower bound, min-max optimization, photovoltaic/wind/battery power system., upper bound
This paper proposes an improved interval fuzzy modeling (imIFML) technique based on modified linear programming and actual boundary points of data. The imIFML technique comprises four design stages. The first stage is based on conventional interval fuzzy modeling (coIFML) with first-order model and linear programming. The second stage defines reference lower and upper bounds of data using MATLAB. The third stage initially adjusts scaling parameters in the modified linear programming. The last stage automatically fine-tunes parameters in the modified linear programming to realize the best possible model. Lower and upper bounds approximated by the imIFML technique are closely fitted to the reference lower and upper bounds, respectively. The proposed imIFML is thus significantly less conservative in cases of large variation in data, while robustness is inherited from the coIFML. Design flowcharts, equations, and sample MATLAB code are presented for reference in future experiments. Perform... [more]
A Tale of Two Chinese Transit Metropolises and the Implementation of Their Policies: Shenyang and Dalian (Liaoning Province, China)
Rui Mu, Martin de Jong
February 24, 2020 (v1)
Subject: Energy Policy
Keywords: China, Dalian, policy implementation, Shenyang, transit metropolis, transport policy
To promote sustainable urbanization and combat the economic, environmental, energy and safety issues that go with rapid motorization, the Ministry of Transport in China has introduced the “Transit Metropolis” program with a substantive amount of funds devoted to the implementation of the program in local governments. This represents the largest ever central government-led effort addressing transit metropolis development in the world. How has the program been implemented locally? Have the selected demonstration cities followed the same principle or taken comparable measures to implement their version of the transit metropolis? What is their performance? These questions remain unknown in the current literature. This article answers the above questions through a literature review, interviews and comparative case studies in Shenyang and Dalian, two large cities in Liaoning Province. It shows that both cities have successfully achieved the target levels for building a transit metropolis. Si... [more]
A Comparative Study on Controllers for Improving Transient Stability of DFIG Wind Turbines During Large Disturbances
Minh Quan Duong, Sonia Leva, Marco Mussetta, Kim Hung Le
February 24, 2020 (v1)
Keywords: crowbar protection, Doubly-Fed Induction Generator (DFIG), squirrel-cage induction generator (SCIG), transient stability, wind turbine
Under power system short-circuits, the Doubly-Fed Induction Generator (DFIG) Wind Turbines (WT) are required to be equipped with crowbar protections to preserve the lifetime of power electronics devices. When the crowbar is switched on, the rotor windings are short-circuited. In this case, the DFIG behaves like a squirrel-cage induction generator (SCIG) and can adsorb reactive power, which can affect the power system. A DFIG based-fault-ride through (FRT) scheme with crowbar, rotor-side and grid-side converters has recently been proposed for improving the transient stability: in particular, a hybrid cascade Fuzzy-PI-based controlling technique has been demonstrated to be able to control the Insulated Gate Bipolar Transistor (IGBT) based frequency converter in order to enhance the transient stability. The performance of this hybrid control scheme is analyzed here and compared to other techniques, under a three-phase fault condition on a single machine connected to the grid. In particula... [more]
Design of Peak Efficiency of 85.3% WPC/PMA Wireless Power Receiver Using Synchronous Active Rectifier and Multi Feedback Low-Dropout Regulator
Zaffar Hayat Nawaz Khan, Young-Jun Park, Seong Jin Oh, Byeong Gi Jang, Seong-Mun Park, Hamed Abbasizadeh, Young Gun Pu, Keum Cheol Hwang, Youngoo Yang, Minjae Lee, Kang-Yoon Lee
February 24, 2020 (v1)
Keywords: active rectifier, multi-feedback low-dropout regulator, power conversion efficiency (PCE), wireless power receiver
An efficient synchronous active rectifier and Multi Feedback low drop out (LDO) Regulator coupled with a wireless power receiver (WPR) is proposed in this study. An active rectifier with maximum power conversion efficiency (PCE) of 94.2% is proposed to mitigate the reverse leakage current using zero current sensing. Output voltage and current are regulated by multi-feedback LDO regulator, sharing the single path transistor. The proposed chip is fabricated in the 0.18 μm BCD technology having die area of 16.0 mm². A 94.2% power conversion efficiency with the load current of 800 mA is measured for the proposed active rectifier.
Showing records 989 to 1013 of 1263. [First] Page: 1 37 38 39 40 41 42 43 44 45 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025
Filter by month: January | February | March | April | May | June | July | August | September | October | November | December