Browse
Records Added in 2020
Records added in 2020
Filter by month: January | February | March | April | May | June | July | August | September | October | November | December
1014. LAPSE:2020.0252
Integrated Optimization of Speed Profiles and Power Split for a Tram with Hybrid Energy Storage Systems on a Signalized Route
February 24, 2020 (v1)
Subject: Process Control
Keywords: hp-adaptive pseudospectral method, hybrid tram, multiple phases integrated optimization, signal control strategy
A tram with on-board hybrid energy storage systems based on batteries and supercapacitors is a new option for the urban traffic system. This configuration enables the tram to operate in both catenary zones and catenary-free zones, and the storage of regenerative braking energy for later usage. This paper presents a multiple phases integrated optimization (MPIO) method for the coordination of speed profiles and power split considering the signal control strategy. The objective is to minimize the equivalent total energy consumption of all the power sources, which includes both the energy from the traction substation and energy storage systems. The constraints contain running time, variable gradients and curves, speed limits, power balance and signal time at some intersections. The integrated optimization problem is formulated as a multiple phases model based on the characters of the signalized route. An integrated calculation framework, using hp-adaptive pseudospectral method, is propose... [more]
1015. LAPSE:2020.0251
Mitigation Conducted Emission Strategy Based on Transfer Function from a DC-Fed Wireless Charging System for Electric Vehicles
February 24, 2020 (v1)
Subject: Energy Management
Keywords: conducted emission, electric vehicle, mitigation strategy, wireless charging system
The large dv/dt and di/dt outputs of power devices in wireless charging system (WCS) in electric vehicles (EVs) always introduce conducted electromagnetic interference (EMI) emissions. This paper proposes a mitigation conducted emission strategy based on transfer function from a direct current fed (DC-fed) WCS for EVs. A complete test for the DC-fed WCS is set up to measure the conducted emission of DC power cables in a frequency range of 150 kHz⁻108 MHz. An equivalent circuit with high-frequency parasitic parameters for WCS for EV is built based on measurement results to obtain the characteristics of conducted emission from WCS. The transfer functions of differential mode (DM) interference and common mode (CM) interference were established. A judgment method of using transfer functions to determine the dominated interference mode responsible for EMI is proposed. From the comparison of simulation results between CM or DM and CM+DM interference, it can be seen that the CM interference i... [more]
1016. LAPSE:2020.0250
Towards Optimal Power Management of Hybrid Electric Vehicles in Real-Time: A Review on Methods, Challenges, and State-Of-The-Art Solutions
February 24, 2020 (v1)
Subject: Energy Management
Keywords: hybrid electric vehicles, intelligent transportation systems, pattern recognition, real-time optimal power management
In light of increasing alerts about limited energy sources and environment degradation, it has become essential to search for alternatives to thermal engine-based vehicles which are a major source of air pollution and fossil fuel depletion. Hybrid electric vehicles (HEVs), encompassing multiple energy sources, are a short-term solution that meets the performance requirements and contributes to fuel saving and emission reduction aims. Power management methods such as regulating efficient energy flow to the vehicle propulsion, are core technologies of HEVs. Intelligent power management methods, capable of acquiring optimal power handling, accommodating system inaccuracies, and suiting real-time applications can significantly improve the powertrain efficiency at different operating conditions. Rule-based methods are simply structured and easily implementable in real-time; however, a limited optimality in power handling decisions can be achieved. Optimization-based methods are more capable... [more]
1017. LAPSE:2020.0249
Optimal Control Algorithms with Adaptive Time-Mesh Refinement for Kite Power Systems
February 24, 2020 (v1)
Subject: Process Control
Keywords: adaptive algorithms, airborne wind energy, continuous-time systems, kite power systems, nonlinear systems, optimal control, real-time optimization, time-mesh refinement
This article addresses the problem of optimizing electrical power generation using kite power systems (KPSs). KPSs are airborne wind energy systems that aim to harvest the power of strong and steady high-altitude winds. With the aim of maximizing the total energy produced in a given time interval, we numerically solve an optimal control problem and thereby obtain trajectories and controls for kites. Efficiently solving these optimal control problems is crucial when the results are used in real-time control schemes, such as model predictive control. For this highly nonlinear problem, we derive continuous-time models—in 2D and 3D—and implement an adaptive time-mesh refinement algorithm. By solving the optimal control problem with such an adaptive refinement strategy, we generate a block-structured adapted mesh which gives results as accurate as those computed using fine mesh, yet with much less computing effort and high savings in memory and computing time.
1018. LAPSE:2020.0248
A Voltage and Frequency Control Strategy for Stand-Alone Full Converter Wind Energy Conversion Systems
February 24, 2020 (v1)
Subject: Process Control
Keywords: frequency regulation, full converter (FC), isolated operation, permanent magnet synchronous generators (PMSGs), voltage-sourced converter, wind energy
This paper addresses the design and analysis of a voltage and frequency control (VFC) strategy for full converter (FC)-based wind energy conversion systems (WECSs) and its applicability for the supply of an isolated load. When supplying an isolated load, the role of the back-to-back converters in the FC must change with respect to a grid-connected application. Voltage and frequency are established by the FC line side converter (LSC), while the generator side converter (GSC) is responsible for maintaining constant voltage in the DC link. Thus, the roles of the converters in the WECS are inverted. Under such control strategies, the LSC will automatically supply the load power and hence, in order to maintain a stable operation of the WECS, the wind turbine (WT) power must also be controlled in a load-following strategy. The proposed VFC is fully modelled and a stability analysis is performed. Then, the operation of the WECS under the proposed VFC is simulated and tested on a real-time tes... [more]
1019. LAPSE:2020.0247
Effect of Electrolyte Thickness on Electrochemical Reactions and Thermo-Fluidic Characteristics inside a SOFC Unit Cell
February 24, 2020 (v1)
Subject: Modelling and Simulations
Keywords: computational fluid dynamics (CFD), electrolyte thickness, heat and mass transfer, operating temperature, solid oxide fuel cell (SOFC)
We investigated the effect of electrolyte thickness and operating temperature on the heat and mass transfer characteristics of solid oxide fuel cells. We conducted extensive numerical simulations to analyze single cell performance of a planar solid oxide fuel cell (SOFC) with electrolyte thicknesses from 80 to 100 μm and operating temperatures between 700 °C and 800 °C. The commercial computational fluid dynamics (CFD) code was utilized to simulate the transport behavior and electrochemical reactions. As expected, the maximum power density increased with decreasing electrolyte thickness, and the difference became significant when the current density increased among different electrolyte thicknesses at a fixed temperature. Thinner electrolytes are beneficial for volumetric power density due to lower ohmic loss. Moreover, the SOFC performance enhanced with increasing operating temperature, which substantially changed the reaction rate along the channel direction. This study can be used t... [more]
1020. LAPSE:2020.0246
Screening of Amino Acids and Surfactant as Hydrate Promoter for CO2 Capture from Flue Gas
February 12, 2020 (v1)
Subject: Reaction Engineering
Keywords: amino acids, Carbon Dioxide Capture, flue gas hydrate, sodium dodecyl sulfate
In this study, the kinetics of flue gas hydrate formation in bulk water in the presence of selected amino acids and surfactants are investigated. Four amino acids (3000 ppm) are selected based on different hydropathy index. Constant-ramping and isothermal experiments at 120 bar pressure and 1 °C temperature are carried out to compare their hydrate promotion capabilities with surfactant sodium dodecyl sulfate (SDS) (500−3000 ppm) and water. Based on experimental results, we report the correlation between hydrate promotion capability of amino acids and their hydrophobicity. Hydrophobic amino acids show stronger flue gas hydrate promotion capability than water and hydrophilic amino acids. We discuss the controlling mechanisms to differentiate between promoters and inhibitors’ roles among the amino acids. Between 2000−3000 ppm concentrations, hydrophobic amino acids have near similar promotion capabilities as SDS. This research highlights the potential use of amino acids as promoters or in... [more]
1021. LAPSE:2020.0245
Numerical Study on the Influence of Inlet Guide Vanes on the Internal Flow Characteristics of Centrifugal Pump
February 12, 2020 (v1)
Subject: Modelling and Simulations
Keywords: centrifugal pump, inlet guide vanes, offset angle, the pressure fluctuation frequency
In order to make the centrifugal pump run efficiently and stably under various working conditions, the influences of the incoming vortex flow in the inlet pipe on the main flow in the impeller is studied numerically, based on the k − ω SST turbulence model. Some guide vanes with different offset angle were added to change the statistical characteristic of the internal flow in the inlet pipe of the centrifugal pump. Both contour distributions of internal flow and statistical results of external performance are obtained and analyzed. The results show that the existence of vanes can divide the large vortex because of the reversed flow from the rotating impeller at low flow rate conditions into small vortices, which are easier to dissipate, make the velocity and pressure distribution more uniform, improve the stability of the flow in the impeller, reduce the hydraulic loss, and improve the hydraulic performance of the pump. The pump with vanes of offset angle 25° has a small pressu... [more]
1022. LAPSE:2020.0244
Modeling and Exploiting Microbial Temperature Response
February 12, 2020 (v1)
Subject: Modelling and Simulations
Keywords: bioprocess engineering, calorimetry, monitoring and control, temperature modeling, thermal growth curve, thermoregulation
Temperature is an important parameter in bioprocesses, influencing the structure and functionality of almost every biomolecule, as well as affecting metabolic reaction rates. In industrial biotechnology, the temperature is usually tightly controlled at an optimum value. Smart variation of the temperature to optimize the performance of a bioprocess brings about multiple complex and interconnected metabolic changes and is so far only rarely applied. Mathematical descriptions and models facilitate a reduction in complexity, as well as an understanding, of these interconnections. Starting in the 19th century with the “primal” temperature model of Svante Arrhenius, a variety of models have evolved over time to describe growth and enzymatic reaction rates as functions of temperature. Data-driven empirical approaches, as well as complex mechanistic models based on thermodynamic knowledge of biomolecular behavior at different temperatures, have been developed. Even though underlying biological... [more]
1023. LAPSE:2020.0243
Characteristics of Low-Temperature Polyvinyl Chloride Carbonization by Catalytic CuAl Layered Double Hydroxide
February 12, 2020 (v1)
Subject: Reaction Engineering
Keywords: catalytic PVC pyrolysis, CuAl layered double hydroxide (CuAl-LDH), PVC carbonization
A good way to make carbon materials was presented in low-temperature polyvinyl chloride (PVC) carbonization by catalysis. The process of low-temperature PVC carbonization by CuAl-layered double hydroxide (CuAl-LDH) was investigated by thermogravimetric analysis (TGA) and tubular furnace. The results show that CuAl-LDH accounting for 5% of PVC mass enabled acceleration of the dehydrochlorination in PVC as soon as possible and maximized the yield of the PVC carbonized product. The vacuum with 0.08 MPa, 20 °C/min heating rate and 90 min carbonized maintenance time were optimal for PVC carbonization. Moreover, the best morphology and yield of the carbonized product was provided at a carbonization temperature of 300 °C.
1024. LAPSE:2020.0242
Energy and Material Flows and Carbon Footprint Assessment Concerning the Production of HMF and Furfural from a Cellulosic Biomass
February 12, 2020 (v1)
Subject: Energy Policy
Keywords: 5-hydroxymethylfurfural, bio-based chemical production, carbon footprint, furfural, HMF, material and energy flows
5-hydroxymethyl-furfural (HMF) and furfural are interesting as potential platform chemicals for a bio-based chemical production economy. Within the scope of this work, the process routes under technical development for the production of these platform chemicals were investigated. For two selected processes, the material and energy flows, as well as the carbon footprint, were examined in detail. The possible production process optimizations, further development potentials, and the research demand against the background of the reduction of the primary energy expenditure were worked out.
1025. LAPSE:2020.0241
Polyetherimide-Montmorillonite Nano-Hybrid Composite Membranes: CO2 Permeance Study via Theoretical Models
February 12, 2020 (v1)
Subject: Materials
Keywords: bharadwaj, CO2 permeation, composite membranes, hollow fibre, montmorillonite, polyetherimide
The incorporation of aminolauric acid modified montmorillonite (f-MMT) in polyetherimide (PEI) has been implemented to develop hollow fibre nano-hybrid composite membranes (NHCMs) with improved gas separation characteristics. The aforementioned characteristics are caused by enhanced f-MMT spatial dispersion and interfacial interactions with PEI matrix. In this study, existing gas permeation models such as, Nielsen, Cussler, Yang−Cussler, Lape−Cussler and Bharadwaj were adopted to estimate the dispersion state of f-MMT and to predict the CO2 permeance in developed NHCMs. It was found out that the average aspect ratio estimated was 53, with 3 numbers of stacks per unit tactoid, which showed that the intercalation f-MMT morphology is the dominating dispersion state of filler in PEI matrix. Moreover, it was observed that Bharadwaj model showed the least average absolute relative error (RE) values till 3 wt. % f-MMT loading in the range of ±10 for a pressure range of 2 to 10 bar. Hence, Bha... [more]
1026. LAPSE:2020.0240
Controllability Comparison of the Four-Product Petlyuk Dividing Wall Distillation Column Using Temperature Control Schemes
February 12, 2020 (v1)
Subject: Process Control
Keywords: dividing wall distillation column (DWDC), extended Petlyuk DWDC, simplified double temperature difference control (SDTDC), simplified temperature difference control (STDC), temperature control (TC)
An effective process intensification strategy based on dividing walls shows promising energy-saving results for distillation processes. The three-product Petlyuk dividing wall distillation columns (DWDCs) are able to save approximately 30% energy in comparison with the traditional distillation columns. Furthermore, the four-product extended Petlyuk DWDC reduces about 50% of operation costs than conventional distillation sequences. Although researchers have extensively studied control schemes for the three-product Petlyuk DWDC, relatively little work has been done on the four-product extended Petlyuk DWDC. This paper studies feasible temperature control schemes containing temperature control scheme (TC), simplified temperature difference control scheme (STDC), and simplified double temperature difference control scheme (SDTDC) for the four-product extended Petlyuk DWDC. STDC and SDTDC are introduced so as to improve the dynamic performances with simple control schemes. All three control... [more]
1027. LAPSE:2020.0239
Plasmonic-Active Nanostructured Thin Films
February 12, 2020 (v1)
Subject: Materials
Keywords: biosensing, gold nanostructures, lithography, localized surface plasmon resonance (LSPR), nanofabrication, nanohole array, plasmonics, thin film
Plasmonic-active nanomaterials are of high interest to scientists because of their expanding applications in the field for medicine and energy. Chemical and biological sensors based on plasmonic nanomaterials are well-established and commercially available, but the role of plasmonic nanomaterials on photothermal therapeutics, solar cells, super-resolution imaging, organic synthesis, etc. is still emerging. The effectiveness of the plasmonic materials on these technologies depends on their stability and sensitivity. Preparing plasmonics-active nanostructured thin films (PANTFs) on a solid substrate improves their physical stability. More importantly, the surface plasmons of thin film and that of nanostructures can couple in PANTFs enhancing the sensitivity. A PANTF can be used as a transducer for any of the three plasmonic-based sensing techniques, namely, the propagating surface plasmon, localized surface plasmon resonance, and surface-enhanced Raman spectroscopy-based sensing techniqu... [more]
1028. LAPSE:2020.0238
Research on Green Power Dispatching Based on an Emergy-Based Life Cycle Assessment
February 12, 2020 (v1)
Subject: Energy Policy
Keywords: coal-fired power generation, Em-LCA evaluation, environmental impacts, green power dispatching, process management
Environmental protection pressures and green energy strategies have created major challenges for a cleaner production of China’s coal-fired power generation. Although China’s electric power dispatching department has tried to prioritize clean energy, the current dispatching models lack environmental indicators related to coal-fired power generation. The main purpose of this paper is to provide a comprehensive environmental indicator for the cleanliness evaluation of coal-fired power plants. In this paper, the (Emergy-based Life Cycle Assessment) Em-LCA method is used to measure and analyze environmental related resource consumption, socio-economic investment, and emissions in the whole life cycle of coal-fired power plants. At the same time, based on the above three environmental impacts in the whole life cycle, this paper constructs the (Em-LCA based Cleaner Production Comprehensive Evaluation) ECPCE index to guide a green dispatching plan. By comparing the calculation results of the... [more]
1029. LAPSE:2020.0237
The Potential Antibacterial and Antifungal Activities of Wood Treated with Withania somnifera Fruit Extract, and the Phenolic, Caffeine, and Flavonoid Composition of the Extract According to HPLC
February 12, 2020 (v1)
Subject: Biosystems
Keywords: antimicrobial activity, flavonoid, phenolic, Withania somnifera fruits, wood bio-fungicide
In the present study, Melia azedarach wood blocks treated with different acetone extract concentrations from Withania somnifera fruits are assessed for their antibacterial and anti-fungal activities. Wood blocks of M. azedarach treated with W. somnifera fruit extract at concentrations of 0, 1, 2, and 3% are evaluated for in vitro antimicrobial activity against five genbank accessioned bacterial strains—Agrobacterium tumefaciens, Dickeya solani, Erwinia amylovora, Pseudomonas cichorii, and Serratia pylumthica—and two fungi, namely, Fusarium culmorum and Rhizoctonia solani. Through HPLC analysis we find that the most abundant quantified phenolic and flavonoid compounds of acetone extract (mg/100 g) are salicylic acid (9.49), vanillic acid (4.78), rutin (4702.58), and myricetin (1386.62). Wood treated with the extract at 2% and 3% show no growth of A. tumefaciens, E. amylovora, and P. cichorii. Use of the extract at 3% causes inhibition of fungal mycelia of F. culmorum and R. solani by 84... [more]
1030. LAPSE:2020.0236
Evaluation of Different Treatment Processes for Landfill Leachate Using Low-Cost Agro-Industrial Materials
February 12, 2020 (v1)
Subject: Interdisciplinary
Keywords: coagulation, heavy metals, landfill, leachate treatment, removal efficiency, tannin
Leachate is a complex liquid that is often produced from landfills, and it contains hazardous substances that may endanger the surrounding environment if ineffectively treated. In this work, four leachate treatment applications were examined: combined leachate/palm oil mill effluent (POME) (LP), leachate/tannin (LT), pre-(leachate/tannin) followed by post-(leachate/POME) (LT/LP), and pre-(leachate/POME) followed by post-(leachate/tannin) (LP/LT). The aim of this work is to evaluate and compare the performance of these treatment applications in terms of optimizing the physicochemical parameters and removing heavy metals from the leachate. The highest efficiency for the optimization of the most targeted physicochemical parameters and the removal of heavy metals was with the LP/LT process. The results are indicative of three clusters. The first cluster involves raw leachate (cluster 1), the second contains LP and LP/LT (cluster 2), and the third also consists of two treatment applications... [more]
1031. LAPSE:2020.0235
Co-Firing of Sawdust and Liquid Petroleum Gas in the Application of a Modified Rocket Stove
February 12, 2020 (v1)
Subject: Reaction Engineering
Keywords: co-firing, LPG stove, pyrolysis, rocket stove, sawdust
The heating rate, firepower, and thermal efficiency of a modified rocket stove using sawdust and liquid petroleum gas (LPG) as co-firing fuel were investigated. Three modified rocket stoves with a height of 400 mm and outside diameters of 225, 385, and 550 mm were tested. It was found that there was an insignificant difference in heating rate and firepower when stoves were tested without co-firing with LPG. In this case, the stove heating rate was in the range of 1.49−1.55 °C/min. When LPG was used, the heating rate tended to linearly increase with the increase of LPG flow rate. The heating rate was in range of 2.42−2.80, 2.63−3.27, and 3.07−4.22 °C/min when LPG consumption rates were 2.38 × 10−5, 3.33 × 10−5, and 5.00 × 10−5 kg/s, respectively. The slight increase of stove heating rate and firepower was seen when the stove diameter was increased from 225 to 385 mm. The increase of stove diameter from 385 to 550 mm resulted in a huge increase of heating rate and firepower. Thermal effi... [more]
1032. LAPSE:2020.0234
Optimization Design and Analysis of Polymer High Efficiency Mixer in Offshore Oil Field
February 12, 2020 (v1)
Subject: Modelling and Simulations
Keywords: dissolving technique, Fluent, high-efficiency mixer, numerical simulation, polymer flooding
The degree of polymer-water mixing in high-pressure pipelines on offshore oilfields usually influences the polymer solution’s performance. To realize efficient mixing of the polymer mother liquor with dilution water in the high-pressure pipeline, a high-efficiency mixer is designed and optimized. The designed mixer consists of four parts: a T-shaped pipe as the main body, an inlet flow-splitting plate, a stainless-steel flow-guiding tube, and an outlet flow-splitting plate. Mathematical models are built by using computational fluid dynamics (CFD) and the mixing effects are compared by using Fluent. The research results show that compared with conventional T-shaped mixers, the designed high-efficiency mixer has better mixing performance and increases the mixing rate to 80%. To optimize the mixing rate, the length of the stainless-steel tube is increased and the tube is perforated to guide the flow. The result shows that boring holes along straight lines around the tube can achieve good... [more]
1033. LAPSE:2020.0233
Short-Term Wind Power Prediction Based on Improved Grey Wolf Optimization Algorithm for Extreme Learning Machine
February 12, 2020 (v1)
Subject: Intelligent Systems
Keywords: extreme learning machine, improved grey wolf optimization algorithm, phase space reconstruction, variational mode decomposition
In order to improve the accuracy of wind power prediction and ensure the effective utilization of wind energy, a short-term wind power prediction model based on variational mode decomposition (VMD) and an extreme learning machine (ELM) optimized by an improved grey wolf optimization (GWO) algorithm is proposed. The original wind power sequence is decomposed into series of modal components with different center frequencies by the VMD method and some new sequences are obtained by phase space reconstruction (PSR). Then, the ELM model is established for different new time series, and the improved GWO algorithm is used to optimize its parameters. Finally, the output results are weighted and merged as the final predicted value of wind power. The root-mean-square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of the proposed VMD-improved GWO-ELM prediction model in the paper are 5.9113%, 4.6219%, and 13.01% respectively, which are better than these of ELM,... [more]
1034. LAPSE:2020.0232
Non-Linear Sliding Mode Controller for Photovoltaic Panels with Maximum Power Point Tracking
February 12, 2020 (v1)
Subject: Process Control
Keywords: integer order SMC, maximum power point tracking, perturb and observe algorithm, photovoltaic panel
In this paper, nonlinear sliding mode control (SMC) techniques formulated for extracting maximum power from a solar photovoltaic (PV) system under variable environmental conditions employing the perturb and observe (P and O) maximum power point tracking (MPPT) technique are discussed. The PV system is connected with load through the boost converter. A mathematical model of the boost converter is derived first, and based on the derived model, a SMC is formulated to control the gating pulses of the boost converter switch. The closed loop system stability is verified through the Lyapunov stability theorem. The presented control scheme along with the solar PV system is simulated in MATLAB (matric laboratory) (SMC controller and PWM (Pulse Width Modulation) part) and PSIM (Power electronics simulations) (solar PV and MPPT algorithm) environments using the Simcoupler tool. The simulation results of the proposed controller (SMC) are compared with the classical proportional integral derivative... [more]
1035. LAPSE:2020.0231
Physicochemical Properties of Guava Snacks as Affected by Drying Technology
February 12, 2020 (v1)
Subject: Materials
Keywords: convective drying, guava, lyophilization, properties, Refractance Window®
Guava is widely consumed because of its agro-industrial use, and its antioxidant properties attributed to vitamin C and carotenoids content. However, it has a short shelf life. Guava has been dried by atomization, fluidized bed, lyophilization (FD) and convective drying (CD). CD requires long operation times and the product characteristics are not desirable. In contrast, FD produces high quality products, but requires long processing times, high energy consumption and high operation costs. As an alternative, the Refractance Window® (RW) drying is relatively simple and cheap technique. The objective of this study was to compare the effect of CD, FD and RW techniques, on the moisture content, water activity, color, porosity, volume change, vitamin C and carotenoids content in guava samples. The samples dried by RW required less time to reduce the moisture content and exhibited smaller changes in color than CD or FD. There were greater losses of carotenoids and vitamin C when drying by CD... [more]
1036. LAPSE:2020.0230
A Dynamic Active Safe Semi-Supervised Learning Framework for Fault Identification in Labeled Expensive Chemical Processes
February 12, 2020 (v1)
Subject: Process Monitoring
Keywords: active learning, chemical process, fault identification, feature selection, ontology, semi-supervised learning
A novel active semi-supervised learning framework using unlabeled data is proposed for fault identification in labeled expensive chemical processes. A principal component analysis (PCA) feature selection strategy is first given to calculate the weight of the variables. Secondly, the identification model is trained based on the obtained key process variables. Thirdly, the pseudo label confidence of identification model is dynamically optimized with an historical, current, and future pseudo label confidence mean. To increase the upper limit of the identification model that is self-learning with high entropy process data, active learning is used to identify process data and diagnosis fault causes by ontology. Finally, a PCA-dynamic active safe semi-supervised support vector machine (PCA-DAS4VM) for fault identification in labeled expensive chemical processes is built. The application in the Tennessee Eastman (TE) process shows that this hybrid technology is able to: (i) eliminate chemical... [more]
1037. LAPSE:2020.0229
Ultrasonically Induced Sulfur-Doped Carbon Nitride/Cobalt Ferrite Nanocomposite for Efficient Sonocatalytic Removal of Organic Dyes
February 12, 2020 (v1)
Subject: Materials
Keywords: carbon nitride, catalyst, cobalt ferrite, nanocomposite, organic dye, SCN/CoFe2O4, sonocatalyst, ultrasound, ultrasound-assisted degradation
The sulfur-doped carbon nitride/cobalt ferrite nanocomposite (SCN/CoFe2O4) was prepared via ultrasonication and studied for the sonocatalytic degradation of wastewater organic dye pollutants including methylene blue, rhodamine B, and Congo red. The X-ray photoelectron spectroscopy confirmed the presence and atomic ratios of S, C, N, Co, Fe, and O elements and their corresponding bonds with Co2+ and Fe3+ cations. The nanocomposite was found to have aggregated nanoparticles on a sheet-like structure. The bandgap energy was estimated to be 1.85 eV. For the sonocatalytic degradation of 25-ppm methylene blue at 20 kHz, 1 W and 50% amplitude, the best operating condition was determined to be 1 g/L of catalyst dosage and 4 vol % of hydrogen peroxide loading. Under this condition, the sonocatalytic removal efficiency was the highest at 96% within a reaction period of 20 min. SCN/CoFe2O4 outperformed SCN and CoFe2O4 by 2.2 and 6.8 times, respectively. The SCN/CoFe2O4 nanocomposite was also foun... [more]
1038. LAPSE:2020.0228
Hygro-Thermo-Mechanical Responses of Balsa Wood Core Sandwich Composite Beam Exposed to Fire
February 12, 2020 (v1)
Subject: Modelling and Simulations
Keywords: balsa core, buckling failure, mass loss kinetic, mechanical responses, moisture content, sandwich composite fire
In this study, the hygro−thermo−mechanical responses of balsa core sandwich structured composite was investigated by using experimental, analytical and numerical results. These investigations were performed on two types of specimen conditions: dry and moisture saturation sandwich composite specimens that are composed of E-glass/polyester skins bonded to a balsa core. The wet specimens were immersed in distilled water at 40 °C until saturated with water. The both dry and wet sandwich composite specimens were heated by fire. The mass loss kinetic and the mechanical properties were investigated by using a cone calorimeter following the ISO 5660 standard and three-point bending mechanical test device. Experimental data show that the permeability and fire resistance of the sandwich structure are controlled by two composite skins. Obtained results allow us to understand the Hygro−Thermo−Mechanical Responses of the sandwich structured composite under application conditions.