Browse
Records Added in July 2019
Records added in July 2019
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 204 to 228 of 253. [First] Page: 1 6 7 8 9 10 11 Last
Evaluation of the Difficulties in the Internet of Things (IoT) with Multi-Criteria Decision-Making
Buse Uslu, Tamer Eren, Şeyda Gür, Evrencan Özcan
July 25, 2019 (v1)
Keywords: analytic hierarchy process, analytic network process, Internet of Things, IoT, multi-criteria decision-making
The rapid development of technology has increased the desire of all to be on the Internet. The discovery that objects born of the Internet communicate with each other without external factors revealed, with the fourth industrial revolution, the concept of the Internet of Things (IoT). The communication of objects with each other means minimum labor and minimum cost for enterprises. Enterprises that want to transition to the Internet of Things face many difficulties. Identifying and correcting these difficulties can lead to both lost time and high cost. In this study, we investigated the difficulties encountered in the Internet of Things. As a result of the study, the degree of importance of the factors causing these difficulties was determined by multi-criteria decision-making methods and was presented to the enterprises. The main criteria, and the sub-criteria related to these main criteria, were determined. The main purpose of the enterprises transitioning to Industry 4.0 is the comm... [more]
Application of Parameter Optimization to Search for Oscillatory Mass-Action Networks Using Python
Veronica L. Porubsky, Herbert M. Sauro
July 25, 2019 (v1)
Keywords: biological networks, BioModels Database, bistable switch, differential evolution, evolutionary algorithm, Hopf bifurcation, mass-action networks, oscillator, parameter optimization, turning point bifurcation
Biological systems can be described mathematically to model the dynamics of metabolic, protein, or gene-regulatory networks, but locating parameter regimes that induce a particular dynamic behavior can be challenging due to the vast parameter landscape, particularly in large models. In the current work, a Pythonic implementation of existing bifurcation objective functions, which reward systems that achieve a desired bifurcation behavior, is implemented to search for parameter regimes that permit oscillations or bistability. A differential evolution algorithm progressively approximates the specified bifurcation type while performing a global search of parameter space for a candidate with the best fitness. The user-friendly format facilitates integration with systems biology tools, as Python is a ubiquitous programming language. The bifurcation−evolution software is validated on published models from the BioModels Database and used to search populations of randomly-generated mass-action... [more]
DEM Investigation of the Influence of Minerals on Crack Patterns and Mechanical Properties of Red Mudstone
Shuai Zhang, Dongsheng Zhang, Qiang Zhao, Mingbo Chi, Wei Zhang, Wei Yu
July 25, 2019 (v1)
Subject: Materials
Keywords: crack distribution characteristics, discrete element method, mechanical properties, minerals, uniaxial compressive strength
Rocks are natural heterogeneous materials. It is common for a rock to have several kinds of minerals, which will have a significant effect on its mechanical behavior. The purpose of the numerical simulation study in this paper is to explore the effects of minerals on the crack patterns and mechanical properties of rocks. First, the corresponding calculation model is established by using the discrete element method (DEM), whereby the mechanical parameters of the blocks and joints in the Tyson polygon procedure are fitted with the rock properties obtained in the laboratory. Then, various combination models of different mineral sizes and ratios are established to study the effects of mineral size, position, and ratio on the fracture distribution and mechanical properties of rock samples. The results indicate that with increased circle size of the center mineral and the mineral ratio, the elastic modulus and uniaxial compression strength (UCS) of the model gradually increase. The drop degr... [more]
Evaluating the Factors that are Affecting the Implementation of Industry 4.0 Technologies in Manufacturing MSMEs, the Case of Peru
Chung-Jen Huang, Elisa Denisse Talla Chicoma, Yi-Hsien Huang
July 25, 2019 (v1)
Keywords: analytic hierarchy process, developing countries, Industry 4.0, micro, small, and medium enterprises
The micro, small, and medium enterprises (MSMEs) sector plays a very crucial role in the economic and social development of Peru. Unfortunately, the tough access to the use of technologies is one of the weaknesses of this type of enterprises, which implies a low technological intensity production, according to the new technological trends. This study analyzes the factors that are affecting the implementation of Industry 4.0 technologies in Peruvian micro, small, and medium enterprises. According to the findings from the semi-structured interviews, it has identified four factors that respond to the main question of this research—lack of advanced technology, lack of financial investment, poor management vision, and lack of skilled workers. Data from 49 enterprises from the manufacturing sector were used for the assessment. The surveys conducted on business managers were evaluated using a multi-criterion decision-making method by the analytic hierarchy process. The findings of the study g... [more]
Study of Various Aqueous and Non-Aqueous Amine Blends for Hydrogen Sulfide Removal from Natural Gas
Usman Shoukat, Diego D. D. Pinto, Hanna K. Knuutila
July 25, 2019 (v1)
Keywords: amine solutions, aqueous and non-aqueous solutions, desulfurization, glycols, H2S absorption
Various novel amine solutions both in aqueous and non-aqueous [monoethylene glycol (MEG)/triethylene glycol(TEG)] forms have been studied for hydrogen sulfide (H2S) absorption. The study was conducted in a custom build experimental setup at temperatures relevant to subsea operation conditions and atmospheric pressure. Liquid phase absorbed H2S, and amine concentrations were measured analytically to calculate H2S loading (mole of H2S/mole of amine). Maximum achieved H2S loadings as the function of pKa, gas partial pressure, temperature and amine concentration are presented. Effects of solvent type on absorbed H2S have also been discussed. Several new solvents showed higher H2S loading as compared to aqueous N-Methyldiethanolamine (MDEA) solution which is the current industrial benchmark compound for selective H2S removal in natural gas sweetening process.
Application of VES Acid System on Carbonate Rocks with Uninvaded Matrix for Acid Etching and Fracture Propagation
Yahong Wu, Weiwei Luo, Xunan Jia, Haoqing Fang, Honggang Wang, Shuai Yu
July 25, 2019 (v1)
Subject: Materials
Keywords: acid etching, carbonate rock, core flow experiment, filter loss, VES/HCl solution, X-CT scan
We investigated the performance of viscoelastic surfactant (VES) solution when applied in treatment on the uninvaded matrix using core flooding tests to analyze the impact of VES/CaCl2 concentration on fluid viscosity. In this paper, core samples from Tahe carbonate reservoir, with an average permeability less than 0.02 × 10−3 μm−2 and a small average porosity in the range of approximately 0.04−5.24% are used in the experiments. Computed tomography (CT) scanning is used to provide a detailed description of inner structure variation of cores after the acid system treatment. The results confirmed that a large pressure difference contributed to fracture propagation and the relative permeability of water increased significantly after the treatment. It was also found that higher concentrations of VES and/or Ca2+ induced higher viscosity and a stronger fracturing effect, while a lower concentration improved the reaction rates and etching effect, generating small worm holes inside the core. F... [more]
Implementation of Maximum Power Point Tracking Based on Variable Speed Forecasting for Wind Energy Systems
Yujia Zhang, Lei Zhang, Yongwen Liu
July 25, 2019 (v1)
Keywords: maximum power tracking (MPPT), state feedback controller, wind energy system (WES), wind speed forecasting
In order to precisely control the wind power generation systems under nonlinear variable wind velocity, this paper proposes a novel maximum power tracking (MPPT) strategy for wind turbine systems based on a hybrid wind velocity forecasting algorithm. The proposed algorithm adapts the bat algorithm and improved extreme learning machine (BA-ELM) for forecasting wind speed to alleviate the slow response of anemometers and sensors, considering that the change of wind speed requires a very short response time. In the controlling strategy, to optimize the output power, a state feedback control technique is proposed to achieve the rotor flux and rotor speed tracking purpose based on MPPT algorithm. This method could decouple the current and voltage of induction generator to track the reference of stator current and flux linkage. By adjusting the wind turbine mechanical speed, the wind energy system could operate at the optimal rotational speed and achieve the maximal power. Simulation results... [more]
Viscoelastic Properties of Crosslinked Chitosan Films
Joseph Khouri, Alexander Penlidis, Christine Moresoli
July 25, 2019 (v1)
Subject: Materials
Keywords: chitosan, citric acid, crosslinking, glutaraldehyde, heterogeneous crosslinking, viscoelasticity
Chitosan films containing citric acid were prepared using a multi-step process called heterogeneous crosslinking. These films were neutralized first, followed by citric acid addition, and then heat treated at 150 °C/0.5 h in order to potentially induce covalent crosslinking. The viscoelastic storage modulus, E′, and tanδ were studied using dynamic mechanical analysis, and compared with neat and neutralized films to elucidate possible crosslinking with citric acid. Films were also prepared with various concentrations of a model crosslinker, glutaraldehyde, both homogeneously and heterogeneously. Based on comparisons of neutralized films with films containing citric acid, and between citric acid films either heat treated or not heat treated, it appeared that the interaction between chitosan and citric acid remained ionic without covalent bond formation. No strong evidence of a glass transition from the tanδ plots was observable, with the possible exception of heterogeneously crosslinked... [more]
Some Advances in Supercritical Fluid Extraction for Fuels, Bio-Materials and Purification
Yizhak Marcus
July 25, 2019 (v1)
Keywords: Biomass, contaminant removal, drug particles, fuels, supercritical carbon dioxide, supercritical ethanol, supercritical methanol, supercritical water
Supercritical fluids are used for the extraction of desired ingredients from natural materials, but also for the removal of undesired and harmful ingredients. In this paper, the pertinent physical and chemical properties of supercritical water, methanol, ethanol, carbon dioxide, and their mixtures are provided. The methodologies used with supercritical fluid extraction are briefly dealt with. Advances in the application of supercritical extraction to fuels, the gaining of antioxidants and other useful items from biomass, the removal of undesired ingredients or contaminants, and the preparation of nanosized particles of drugs are described.
Experimental Development of Coal-Like Material with Solid-Gas Coupling for Quantitative Simulation Tests of Coal and Gas Outburst Occurred in Soft Coal Seams
Xingkai Wang, Wenbing Xie, Zhili Su, Qingteng Tang
July 25, 2019 (v1)
Subject: Materials
Keywords: adsorption/desorption properties, coal and gas outburst, coal-like material, deformation feature, mechanical properties, tectonically deformed coal
Solid-gas coupling coal-like materials are essential for simulating coal and gas outbursts and the long-term safety study of CO2 sequestration in coal. However, reported materials still differ substantially from natural coal in mechanical, deformation and gaseous properties; the latter two aspects are common not considered. There is a lack of a definite and quantitative preparation method of coal-like materials with high similarity for future reference. Here, 25 groups of raw material ratios were designed in the orthogonal experiment using uniaxial compression, shearing and adsorption/desorption tests. Experiment results indicated that the coal-like materials were highly similar to soft coals in properties mentioned above. And range analysis revealed the key influencing factors of each mechanical index. The gypsum/petrolatum ratio controls the density, compressive strength, elastic modulus, cohesion and deformation characteristic. The coarse/fine coal powder (1−2 and 0−0.5 mm) controls... [more]
Ascertainment of Surfactin Concentration in Bubbles and Foam Column Operated in Semi-Batch
Rafael Firmani Perna, Maria Carolina Pereira Gonçalves, Cesar Costapinto Santana
July 25, 2019 (v1)
Keywords: biosurfactant, bubbles and foam column, liquid gas adsorption, separation process, surfactin
This paper describes a mathematical model for the convection, diffusion, and balance phenomena for predicting the depletion curves, i.e., variations in the timed surface-active molecule concentration for fractionation processes in bubbles and foam column, operated in semi-batch. The model was applied for the purification of the surfactin solution and the results were compared with experimental data. Gibbs adsorption curves were obtained for the biosurfactant at different temperatures, and then adjusted with estimated parameters, according to the Langmuir adsorption model. The gas bubble sizes were optically determined. The isotherm adsorption parameters and bubble average diameter are crucial for the attainment of the depletion curves, generated by the model described. The results demonstrate that the process is most effective when operating a column with reduced gas flow and low initial concentration. A top product with two or thirty times greater concentration than the initial one wa... [more]
Drivers and Barriers in Using Industry 4.0: A Perspective of SMEs in Romania
Mirela Cătălina Türkeș, Ionica Oncioiu, Hassan Danial Aslam, Andreea Marin-Pantelescu, Dan Ioan Topor, Sorinel Căpușneanu
July 25, 2019 (v1)
Keywords: barriers, business, cloud computing, cyber-physical systems, digitalization, drivers, flexible manufacturing, implementation, Industry 4.0, managers, SMEs, systems
Considering the worldwide evolutionary stage of Industry 4.0, this study wants to fill in a lack of information and decision-making, trying to answer a question about the level of preparation of Romanian Small and Medium-sized Enterprises (SMEs) regarding the implementation of the new technology. The main purpose of this article is to identify the opinions and perceptions of SME managers in Romania on the drivers and barriers of implementing Industry 4.0 technology for business development. The research method used in the study was analyzed by sampling using the questionnaire as a data collection tool. It includes closed questions, measured with a nominal and orderly scale. 176 managers provided complete and useful answers to this research. The collected data were analyzed with the Statistical Package for the Social Sciences (SPSS) package using frequency tables, contingency tables, and main component analysis. Major contributions from research have highlighted the fact that Romania is... [more]
An Intelligent Fault Diagnosis Method Using GRU Neural Network towards Sequential Data in Dynamic Processes
Jing Yuan, Ying Tian
July 25, 2019 (v1)
Keywords: dynamic process, fault diagnosis, gate recurrent unit (GRU), moving horizon
Intelligent fault diagnosis is a promising tool to deal with industrial big data due to its ability in rapidly and efficiently processing collected signals and providing accurate diagnosis results. In traditional static intelligent diagnosis methods, however, the correlation between sequential data is neglected, and the features of raw data cannot be effectively extracted. Therefore, this paper proposes a three-stage fault diagnosis method based on a gate recurrent unit (GRU) network. The raw data is divided into several sequence units by first using a moving horizon as the input of GRU. In this way, we can intercept the sequence to get information as needed. Then, the GRU deep network is established through batch normalization (BN) algorithm to extract the dynamic feature from the sequence units effectively. Finally, the softmax regression is employed to classify faults based on dynamic features. Thus, the diagnosis result is obtained with a probabilistic explanation. Two chemical pro... [more]
Data-Mining for Processes in Chemistry, Materials, and Engineering
Hao Li, Zhien Zhang, Zhe-Ze Zhao
July 25, 2019 (v1)
Keywords: chemistry, data-mining, Energy, engineering, Machine Learning, materials, neural networks
With the rapid development of machine learning techniques, data-mining for processes in chemistry, materials, and engineering has been widely reported in recent years. In this discussion, we summarize some typical applications for process optimization, design, and evaluation of chemistry, materials, and engineering. Although the research and application targets are various, many important common points still exist in their data-mining. We then propose a generalized strategy based on the philosophy of data-mining, which should be applicable for the design and optimization targets for processes in various fields with both scientific and industrial purposes.
Synthesis of Porous Fe/C Bio-Char Adsorbent for Rhodamine B from Waste Wood: Characterization, Kinetics and Thermodynamics
Yao Zhang, Zhichao Lou, Chaochao Wang, Weikai Wang, Jiabin Cai
July 25, 2019 (v1)
Subject: Biosystems
Keywords: Adsorption, bio-char, Fe3C, kinetics, magnetic
In the past decades, dyes waste waters produced from industries have become a major source of environmental pollution causing the destruction of aquatic communities in the ecosystem and greatly threatened human health. Herein, a novel magnetic adsorbent was synthesized by carbonizing iron (III) 2,4-pentanedionate (Fe(acac)3) pre-enriched forestry waste wood at a pyrolysis temperature of 1000 °C. The characterization of the adsorbent conducted via SEM, EDS, VSM, XRD, XPS, and FT-IR spectroscopy. The adsorption trend followed the pseudo-second order kinetics model. The corresponding adsorption performance was efficient with an equilibrium time of only 1 min. Affect factors on the adsorption performance, such as adsorbent dosage, contact time and temperature, were investigated. The magnetic bio-char showed a high adsorption capacity and an efficient adsorption toward RhB, implying great potential application in the treatment of colored wastewaters.
Experimental Investigation of Pore Structure and Movable Fluid Traits in Tight Sandstone
Dengke Liu, Wei Sun, Dazhong Ren
July 25, 2019 (v1)
Subject: Materials
Keywords: movable fluid, Ordos Basin, pore structure, tight sandstones
Whether the variation of pore structures and movable fluid characteristics enhance, deteriorate, or have no influence on reservoir quality has long been disputed, despite their considerable implications for hydrocarbon development in tight sandstone reservoirs. To elucidate these relationships, this study systematically analyzes pore structures qualitatively and quantitatively by various kinds of direct observations, indirect methods, and imaging simulations. We found that the uncertainty of porosity measurements, caused by the complex pore-throat structure, needs to be eliminated to accurately characterize reservoir quality. Bulk water was more easily removed, while surface water tended to be retained in the pores, and the heterogeneity of pore structures was caused by the abundance of tiny pores. The rates of water saturation reduction in macropores are faster than those for tiny pores, and sandstones with poor reservoir quality show no marked descending of lower limits of movable po... [more]
Multiphase Open Phase Processes Differential Equations
Nikolay A. Charykov, Marina V. Charykova, Konstantin N. Semenov, Victor A. Keskinov, Alexey V. Kurilenko, Zhassulan K. Shaimardanov, Botagoz K. Shaimardanova
July 25, 2019 (v1)
Keywords: Gibbs complete and incomplete potential, open phase process, phase equilibrium shift, van der Waals equation, vector-matrix form
The thermodynamic approach for the description of multiphase open phase processes is developed based on van der Waals equation in the metrics of Gibbs and incomplete Gibbs potentials. Examples of thermodynamic modeling of the multiphase and multicomponent A3B5 systems (In-Ga-As-Sb and In-P-As-Sb) and Na+, K+, Mg2+, Ca2+//Cl−, SO42−-H2O water−salt system are presented. Topological isomorphism of different type phase diagrams is demonstrated.
A Flexible Responsive Load Economic Model for Industrial Demands
Reza Sharifi, Amjad Anvari-Moghaddam, S. Hamid Fathi, Vahid Vahidinasab
July 25, 2019 (v1)
Keywords: consumer utility function, demand-side management, economic demand response model, electricity market restructuring
The best pricing method for any company in a perfectly competitive market is the pricing scheme with regards to the marginal cost. In contrast to this environment, there is a market with imperfect competition. In this market, the price can be affected by some players in the generation/demand side (i.e., suppliers and/or buyers). In the economic literature, “market power” refers to a company that has the power to affect prices. In fact, market power is often defined as the ability to divert prices from competitive levels. In the electricity market, especially because of the integration of intermittent renewable energy resources (RESs) along with the inflexibility of demand, there are levels of market power on the supply side. Hence, implementation of demand response (DR) programs is necessary to increase the flexibility of the demand side to deal with the intermittency of renewable generations and at the same time tackle the market power of the supply side. This paper uses economic theo... [more]
Simple Alternatives to PID-Type Control for Processes with Variable Time-Delay
Dana Copot, Mihaela Ghita, Clara M. Ionescu
July 25, 2019 (v1)
Keywords: fractional-order control, industrial devices, process industry, real-time systems, variable time-delay
Process industries include chemicals, petrochemicals, pulp and paper, steel, minerals, food, and power generation industries. Although diverse, all of these share common dynamics in terms of continuous variables and rely on the same measurements, e.g., level, flow, temperature, and pressure. They also have common actuators, such as valves and pumps. Additionally, they have variable time delays from process dynamics, such as mixing effects, measurement lines, or wireless data communication protocols. Processes with variable time delay can often lead to poor performance and instability. This paper proposes a fractional-order (FO) control design with adaptive laws for dealing with such processes, and a comparison is analysed against other controllers established in the literature for delayed dynamics. Two examples are presented to illustrate the advantages of the proposed approach. A real time-embedded control setup and interface to industrial standard devices is tested to illustrate the... [more]
Drying of Drill Cuttings: Emphasis on Energy Consumption and Thermal Analysis
Esra Tınmaz Köse
July 25, 2019 (v1)
Keywords: conveyor belt, drill cuttings, drying, Energy, microwave
Drill cuttings, contaminated with drilling fluids, are characterized by their high moisture content, which can cause problems for collection, storage, and transportation. Additionally, the practice of disposing waste with high moisture content into sanitary landfills is undesirable and mostly forbidden. For that reason, drying of waste with high moisture content, such as drill cuttings, is an essential operation. In this work, microwave and conveyor belt drying processes for drying drill cuttings containing water-based drilling fluids were examined in a lab-scale study. The results of the study indicated that the microwave dryer has been shown to be advantageous in terms of time and energy consumption for drying of thin film layers, while the conveyor drying system was more appropriate for bulk drying.
Special Issue on “Novel Membrane Technologies for Traditional Industrial Processes”
Lan Ying Jiang, Pei Li, Yan Wang
July 25, 2019 (v1)
Subject: Other
Traditional industries span multiple sectors, such as coal, iron and steel, textile, machinery, chemical engineering, shipbuilding, and construction materials [...]
Development of a Microwave Irradiation Probe for a Cylindrical Applicator
Tomohiko Mitani, Ryo Nakajima, Naoki Shinohara, Yoshihiro Nozaki, Tsukasa Chikata, Takashi Watanabe
July 25, 2019 (v1)
Subject: Other
Keywords: applicator design, coaxial feeding, electromagnetic simulation, microwave heating
A microwave irradiation probe was newly developed for downsizing microwave applicators and the overall microwave heating apparatus. The key component of the proposed probe is a tapered section composed of polytetrafluoroethylene (PTFE) and alumina. Insertion of the tapered section between the input port and the applicator vessel realizes impedance matching to the microwave power source and reduces the reflected power from the applicator. The proposed microwave probe for a cylindrical applicator was designed using 3D electromagnetic simulations. The permittivity data of two liquid samples—ultrapure water and 2 M NaOH solution—were measured and taken into simulations. The conductivity of the NaOH solution was estimated from the measurement results. The measured reflection ratio of the fabricated applicator was in good accordance with the simulated one. The frequency ranges in which the measured reflection ratio was less than 10% were from 1.45 GHz to 2.7 GHz when using water and from 1.6... [more]
An Efficient Energy Management in Office Using Bio-Inspired Energy Optimization Algorithms
Ibrar Ullah, Zar Khitab, Muhammad Naeem Khan, Sajjad Hussain
July 25, 2019 (v1)
Keywords: appliance scheduling techniques, bacterial foraging algorithm (BFA), energy management system, energy optimization algorithms, grasshopper optimization algorithm (GOA), smart grid
Energy is one of the valuable resources in this biosphere. However, with the rapid increase of the population and increasing dependency on the daily use of energy due to smart technologies and the Internet of Things (IoT), the existing resources are becoming scarce. Therefore, to have an optimum usage of the existing energy resources on the consumer side, new techniques and algorithms are being discovered and used in the energy optimization process in the smart grid (SG). In SG, because of the possibility of bi-directional power flow and communication between the utility and consumers, an active and optimized energy scheduling technique is essential, which minimizes the end-user electricity bill, reduces the peak-to-average power ratio (PAR) and reduces the frequency of interruptions. Because of the varying nature of the power consumption patterns of consumers, optimized scheduling of energy consumption is a challenging task. For the maximum benefit of both the utility and consumers, t... [more]
Toward Integrating Python Throughout the Chemical Engineering Curriculum: Using Google Colaboratory in the Classroom
Alexander Dowling
July 21, 2019 (v2)
Subject: Education
Keywords: Active Learning, Cloud Computing, Data Analysis, Numerical Methods, Python, Statistics, Undergraduate
Computing and data science skills are without doubt extremely valuable for modern (chemical) engineers. Big data, machine learning, predictive modeling, decision science and similar terms are ever-present in job posting, scientific literature, funding announcements, and popular news. Yet, many chemical engineers lack a background in the fundamentals of computer programming, applied statistics, and mathematical modeling for problem solving. Often, student excitement in data-centric topics manifest through self-study with tutorials, extracurricular projects, and online classes whereby students assemble a toolbox of skills but do not learn the fundamentals that transcend each technique.

In this contribution, I will discuss our ongoing efforts at the University of Notre Dame to create a coherent, integrated strategy for computing and data analysis in the undergraduate curriculum. A key focus is retooling the sophomore-level “Numerical and Statistical Analysis” course (required) to provi... [more]
Modernizing the Undergraduate Process Design Curriculum
Thomas Alan Adams II
July 20, 2019 (v1)
Subject: Education
Keywords: Curriculum, Education, Modelling, Process Design, Process Synthesis, Simulation
In this talk, I give an overview of the chemical engineering curriculum at McMaster University as it relates to the 1.5 year process design sequence. The courses outside the design sequence were recently restructured and redesigned to create an environment with more modelling and algorithmic thinking/algorithmic problem solving. This includes a statistics course and a big data / machine learning course. The end result is that the design sequence is able to focus on state of the art tools and methods for process design because students receive many fundamental principles before the design sequence begins.
Showing records 204 to 228 of 253. [First] Page: 1 6 7 8 9 10 11 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December