Browse
Keywords
Records with Keyword: Fermentation
76. LAPSE:2020.0801
Production of Ethanol from Hemicellulosic Sugars of Exhausted Olive Pomace by Escherichia coli
July 2, 2020 (v1)
Subject: Food & Agricultural Processes
Keywords: acid hydrolysate, biorefinery, detoxification, Fermentation, lignocellulosic residue
Exhausted olive pomace (EOP) is the main residue generated in olive oil industries, after the extraction of the residual oil from olive pomace with hexane. This work studies the ethanol production from hemicellulosic sugars of EOP. The fermentability of the sugar solution, resulting from the acid pretreatment of EOP, was evaluated using Escherichia coli SL100, although a detoxification step was required before fermentation. Overliming and activated charcoal detoxification were tested to minimize the presence of inhibitory compounds in the hydrolysate and to achieve a fermentable medium. E. coli assimilated all sugars in both detoxified hydrolysates and achieved ethanol yields of about 90% of the theoretical one. However, the fermentation time was much shorter when the hydrolysate had been detoxified with activated charcoal (20 h versus 120 h).
77. LAPSE:2020.0741
Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production
June 23, 2020 (v1)
Subject: Food & Agricultural Processes
Keywords: bioethanol, coffee mucilage, Fermentation, Saccharomyces cerevisiae, second generation biofuels
Coffee, one of the most popular food commodities and beverage ingredients worldwide, is considered as a potential source for food industry and second-generation biofuel due to its various by-products, including mucilage, husk, skin (pericarp), parchment, silver-skin, and pulp, which can be produced during the manufacturing process. A number of research studies have mainly investigated the valuable properties of brewed coffee (namely, beverage), functionalities, and its beneficial effects on cognitive and physical performances; however, other residual by-products of coffee, such as its mucilage, have rarely been studied. In this manuscript, the production of bioethanol from mucilage was performed both in shake flasks and 5 L bio-reactors. The use of coffee mucilage provided adequate fermentable sugars, primarily glucose with additional nutrient components, and it was directly fermented into ethanol using a Saccharomyces cerevisiae strain. The initial tests at the lab scale were evaluate... [more]
78. LAPSE:2020.0481
In-Situ Yeast Fermentation Medium in Fortifying Protein and Lipid Accumulations in the Harvested Larval Biomass of Black Soldier Fly
May 22, 2020 (v1)
Subject: Biosystems
Keywords: black soldier fly, coconut endosperm waste, Fermentation, larvae, organic waste, protein, yeast
Recently, worldwide researchers have been focusing on exploiting of black soldier fly larval (BSFL) biomass to serve as the feed mediums for farmed animals, including aquaculture farming, in order to assuage the rising demands for protein sources. In this study, yeast was introduced into coconut endosperm waste (CEW) whilst serving as the feeding medium to rear BSFL in simultaneously performed in situ fermentation. It was found that at a 2.5 wt% yeast concentration, the total biomass gained, growth rate and rearing time were improved to 1.145 g, 0.085 g/day and 13.5 days, respectively. In terms of solid waste reduction, the inoculation of yeast over 0.5 wt% in CEW was able to achieve more than 50% overall degradation, with the waste reduction indexes (WRIs) ranging from 0.038 to 0.040 g/day. Disregarding the concentration of yeast introduced, the protein productivity from 20 BSFL was enhanced from only 0.018 g/day (the control) to 0.025 g/day with the presence of yeast at arbitrary con... [more]
79. LAPSE:2020.0332
Kinetic Modelling of the Coproduction Process of Fumaric and Malic Acids by Rhizopus arrhizus NRRL 1526
April 1, 2020 (v1)
Subject: Reaction Engineering
Keywords: biorefinery, Fermentation, filamentous fungi, fumaric acid, kinetic modelling, malic acid
The production of organic acids by biotechnological processes has experienced a notable impulse with the advent of first and second generation biorefineries and the need of searching for renewable and sustainable feedstock, such as biomass. Fumaric acid is a promising biomonomer for polyamide production and a well-known acidulant and preservative in food and feed industries. Malic acid is a well-known food acidulant with a high market share. The biotechnological Fumaric and Malic acid production via fungi of the Rhizopus genus is being explored nowadays as a process for the valorization of food and food-related waste to obtain food ingredients and key platform chemicals of the so-called biochemical biorefinery. In this work, a preliminary study is performed to find reproducible conditions for the production of the acids by Rhizopus arrhizus NRRL 1526 by controlling fungi morphology and inoculum conditions. Afterwards, several production runs are performed to obtain biomass, glucose, an... [more]
80. LAPSE:2019.1468
Detoxification of a Lignocellulosic Waste from a Pulp Mill to Enhance Its Fermentation Prospects
December 10, 2019 (v1)
Subject: Biosystems
Keywords: biorefinery, detoxification, Fermentation, inhibitors, spent sulfite liquor, sugars
Detoxification is required for sugar bioconversion and hydrolyzate valorization within the biorefining concept for biofuel or bio-product production. In this work, the spent sulfite liquor, which is the main residue provided from a pulp mill, has been detoxified. Evaporation, overliming, ionic exchange resins, and adsorption with activated carbon or black carbon were considered to separate the sugars from the inhibitors in the lignocellulosic residue. Effectiveness in terms of total and individual inhibitor removals, sugar losses and sugar-to-inhibitor removal ratio was determined. The best results were found using the cation exchange Dowex 50WX2 resin in series with the anion exchange Amberlite IRA-96 resin, which resulted in sugar losses of 24.2% with inhibitor removal of 71.3% of lignosulfonates, 84.8% of phenolics, 82.2% acetic acid, and 100% of furfurals. Apart from exchange resins, the results of evaporation, overliming, adsorption with activated carbon and adsorption with black... [more]
81. LAPSE:2019.0441
Optimization of Reducing Sugar Production from Manihot glaziovii Starch Using Response Surface Methodology
March 26, 2019 (v1)
Subject: Biosystems
Keywords: alternative fuel, bioethanol, Fermentation, hydrolysis, Manihot glaziovii (M. glaziovii), Optimization
Bioethanol is known as a viable alternative fuel to solve both energy and environmental crises. This study used response surface methodology based on the Box-Behnken experimental design to obtain the optimum conditions for and quality of bioethanol production. Enzymatic hydrolysis optimization was performed with selected hydrolysis parameters, including substrate loading, stroke speed, α-amylase concentration and amyloglucosidase concentration. From the experiment, the resulting optimum conditions are 23.88% (w/v) substrate loading, 109.43 U/g α-amylase concentration, 65.44 U/mL amyloglucosidase concentration and 74.87 rpm stroke speed, which yielded 196.23 g/L reducing sugar. The fermentation process was also carried out, with a production value of 0.45 g ethanol/g reducing sugar, which is equivalent to 88.61% of ethanol yield after fermentation by using Saccharomyces cerevisiae (S. cerevisiae). The physical and chemical properties of the produced ethanol are within the specifications... [more]
82. LAPSE:2018.0131
Techno-economic comparison of Acetone-Butanol-Ethanol fermentation using various extractants
June 12, 2018 (v1)
Subject: Process Design
Keywords: Acetone, Butanol, Cost of CO2 Emissions Avoided, Ethanol, Extraction, Fermentation, Technoeconomic Analysis
This work compares various chemicals for use as extractants in second-generation Acetone-Butanol-Ethanol fermentation on economic and environmental bases. Both non-toxic and toxic extractants are considered in this study. The combinative extractive-distillation separation process was modelled using a combination of Microsoft Excel 2013, MATLAB 2015 and Aspen Plus v8.8. Separation trains were designed and optimized for each extractant to best take advantage of extractant properties. Upstream units considered in this analysis include: biomass (switchgrass) solids processing, biomass pre-treatment and saccharification, and fermentation. Downstream processes considered include utility generation and wastewater treatment. The cost of CO2 equivalent emissions avoided (CCA) was used as the metric to compare the environmental impact of each process as compared to conventional petroleum-based gasoline. The economic and environmental best extractant is shown to be 2-ethyl-hexanol with a minimum... [more]
83. LAPSE:2018.0132
Techno-economic comparison of Acetone-Butanol-Ethanol fermentation using various extractants
June 12, 2018 (v1)
Subject: Process Design
Keywords: Acetone, Butanol, Cost of CO2 Emissions Avoided, Ethanol, Extraction, Fermentation, Technoeconomic Analysis
This work compares various chemicals for use as extractants in second-generation Acetone-Butanol-Ethanol fermentation on economic and environmental bases. Both non-toxic and toxic extractants are considered in this study. The combinative extractive-distillation separation process was modelled using a combination of Microsoft Excel 2013, MATLAB 2015 and Aspen Plus v8.8. Separation trains were designed and optimized for each extractant to best take advantage of extractant properties. Upstream units considered in this analysis include: biomass (switchgrass) solids processing, biomass pre-treatment and saccharification, and fermentation. Downstream processes considered include utility generation and wastewater treatment. The cost of CO2 equivalent emissions avoided (CCA) was used as the metric to compare the environmental impact of each process as compared to conventional petroleum-based gasoline. The economic and environmental best extractant is shown to be 2-ethyl-hexanol with a minimum... [more]


