Browse
Keywords
Records with Keyword: Fermentation
Showing records 51 to 75 of 83. [First] Page: 1 2 3 4 Last
The Biogas Potential of Oxytree Leaves
Jakub Mazurkiewicz
February 24, 2023 (v1)
Subject: Environment
Keywords: biogas, biogas plant, digestate, Fermentation, fertilizer, GHG, leaves, methane, Oxytree, Paulownia
This article describes the characteristics of th Oxytree (Paulownia) plant, both in terms of its impact on GHG emissions and its potential use to produce biofuel, i.e., biogas. The described research involved the physico-chemical and elemental analysis of the Oxytree leaf composition and its biogas efficiency depending on the harvesting method. Three different scenarios were considered: the freshest possible leaves—processed immediately after stripping from the living tree; after the first day of collection from pruned or harvested wood; after the first week of collection from pruned or harvested wood. The best results were achieved for the harvest of the freshest leaves—on average 430 m3/Mg (biogas) and 223 m3/Mg (methane) per dry organic mass. The highest yield of biogas in terms of fresh mass (FM) was obtained for leaves fallen and collected after 1 day—123 m3/Mg FM, and 59 m3/Mg FM (methane). Processing Oxytree leaves through anaerobic digestion will contribute to reducing the carb... [more]
Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis
Jakub Mazurkiewicz
February 24, 2023 (v1)
Subject: Materials
Keywords: biogas plant, cattle, cow manure, digestate, energetic calculation, Fermentation, fertilizer, GHG, milk cows
The main goal of the publication was to show the differences in profit when using manure directly as fertilizer (after the storage period) or as a substrate for biogas plants with a cogeneration unit, and then using the digestate for fertilization purposes. The comparison covers the streams of costs, revenues and profits over the year between 14 October 2021 and 14 October 2022. This period was chosen due to the energy and fertilization crisis caused by the war in Ukraine. Profitability forecasts for biogas investments (including the payback period) are presented, with the reduction of greenhouse gas emissions, i.e., methane and nitrous oxide, taken into account. The performed economic, energy and ecological calculations of manure management can be used as guidelines when considering investing in biogas plants, as well as what is recently becoming a new trend: the carbon footprint of dairy production. Input substrate parameters, gaseous emissions and biogas yields were obtained from ow... [more]
Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach
Przemysław Seruga, Małgorzata Krzywonos, Emilia den Boer, Łukasz Niedźwiecki, Agnieszka Urbanowska, Halina Pawlak-Kruczek
February 23, 2023 (v1)
Subject: Environment
Keywords: bioenergy, biogas, Fermentation, fertilizer, greenhouse gas, waste management, zero waste
Current and future trends in the world population lead to the continuous growth of municipal waste volumes. Only in the EU-28 approx. 86 million tons of biowaste is produced yearly. On the other hand, the recent energy crisis calls for a fast transition towards more local and renewable energy sources. Most of this stream could be recycled through anaerobic digestion (AD) to produce energy and high-quality fertilizers. This paper presents a balance of dry anaerobic digestion of municipal biowaste based on three years of system monitoring in an industrial-scale AD plant. The results indicate that the average biogas production rate of 120 Nm3/ton of fresh waste can be achieved. Biogas utilization in combined heat and power (CHP) units leads to an overall positive energy balance at significantly reduced CO2 emissions. The overall CO2 emission reduction of 25.3−26.6% was achieved, considering that biogas utilization is environmentally neutral. Moreover, biowaste conversion allows digestate... [more]
Production of Phenyllactic Acid from Porphyra Residues by Lactic Acid Bacterial Fermentation
Chung-Hsiung Huang, Wei-Chen Chen, Yu-Huei Gao, Hsin-I Hsiao, Chorng-Liang Pan
February 23, 2023 (v1)
Subject: Biosystems
Keywords: algae, cellulase, Fermentation, lactic acid bacteria, phenyllactic acid, Porphyra residues
The concept of algae biorefinery is attracting attention because of the abundant valuable compounds within algal biomass. Phenyllactic acid (PhLA), a broad-spectrum antimicrobial organic acid that can be produced by lactic acid bacteria (LAB), is considered a potential biopreservative. In this study, a cascading biorefinery approach was developed to harvest PhLA from Porphyra residues by LAB fermentation. LAB strains were cultivated in de Man, Rogosa and Sharpe (MRS) broth to screen their ability to produce PhLA. As the strains of Lactobacillus plantarum KP3 and L. plantarum KP4 produced higher concentrations of PhLA at 0.09 mg/mL, these two strains were employed for fermentation. After phycobiliprotein extraction, the Porphyra residues, ultrafiltration eluate, phenylalanine (Phe) and yeast extract with a volume of 20 mL were inoculated with LAB strain KP3 and fermented at 37 °C for 120 h. The PhLA content of the fermented broth was 1.86 mg. To optimize the biorefinery process, the ult... [more]
Effects of Different Winemaking Yeasts on the Composition of Aroma-Active Compounds and Flavor of the Fermented Jujube Wine
Yan Zhao, Xiaobin Yu, Fengtao Zhu, Guangpeng Liu, Le Chu, Xinhuan Yan, Yinfei Ma, Fatao He, Gen Li, Ying Zhang, Mengnan Tan, Yao Lu
February 23, 2023 (v1)
Keywords: aroma-active compounds, Fermentation, jujube wine, quality attributes, Saccharomyces cerevisiae
For the winemaking bioprocess of jujube wine, the selection of optimal starter cultures is one of the major concerns before fermentation. In this study, we investigated the effects of different winemaking yeasts on the composition of aroma-active compounds in the fermented jujube wine and identified the principal components that determine the flavor quality. It showed that the starter winemaking yeasts produced a total of 43 aroma-active compounds, of which esters (e.g., ethyl caprylate, ethyl decanoate, ethyl hexanoate, and phenethyl acetate) contribute more to the wine quality attributes, especially for the improvement of the aroma. Moreover, the composition of aroma-active compounds, for example, the ratio of the content of esters and alcohols, exerts a great impact on the flavor quality of jujube wine. Different starter winemaking yeasts resulted in significant differences in the composition (both species and content) of aroma-active compounds, and thus formed different flavors in... [more]
Effect of Natural Fermentation on the Chemical Composition, Mineral Content, Phytochemical Compounds, and Antioxidant Activity of Ziziphus spina-christi (L.) “Nabag” Seeds
Amro B. Hassan, Salah A. Al Maiman, Mohammed A. Mohammed, Ghedeir M. Alshammari, Dalal A. Alkhudhayri, Haya F. Alhuthayli, Mohammed A. Alfawaz, Magdi A. Osman
February 23, 2023 (v1)
Keywords: “Nabag” seeds, antioxidant activity, chemical composition, Fermentation, phytochemical compounds
Effects of fermentation on the chemical composition, mineral, total phenolic, total flavonoid, tannin, vitamin C, total carotenoid content, and antioxidant activity of “Nabag” Ziziphus spina-christi (L.) seeds were investigated. The fermentation process was carried out for 6, 12, 24, and 48 h. The fermentation significantly (p < 0.05) improved the chemical composition and mineral content of “Nabag” seeds, particularly the Ca, Fe, and Zn content. The phenolic, vitamin C, total carotenoid content, and antioxidant activity were significantly (p < 0.05) increased as a result of fermentation compared with unfermented Ziziphus spina-christi (L.) seeds. Fermentation of the seeds for 48 h resulted in the highest increase in crude fiber, Ca, Fe, Zn, and bioactive compounds. These results indicate the potential utilization of fermented “Nabag” seeds in the production and formulation of functional foods rich in crude fiber, essential minerals, and bioactive compounds.
Regulation of Eukaryote Metabolism: An Abstract Model Explaining the Warburg/Crabtree Effect
Laetitia Gibart, Rajeev Khoodeeram, Gilles Bernot, Jean-Paul Comet, Jean-Yves Trosset
February 23, 2023 (v1)
Keywords: biological regulation networks, central carbon metabolism, Crabtree effect, discrete modeling, Fermentation, formal methods, regulation of cell metabolism, respiration, system dynamics, systems biology, Warburg effect
Adaptation of metabolism is a response of many eukaryotic cells to nutrient heterogeneity in the cell microenvironment. One of these adaptations is the shift from respiratory to fermentative metabolism, also called the Warburg/Crabtree effect. It is a response to a very high nutrient increase in the cell microenvironment, even in the presence of oxygen. Understanding whether this metabolic transition can result from basic regulation signals between components of the central carbon metabolism are the the core question of this work. We use an extension of the René Thomas modeling framework for representing the regulations between the main catabolic and anabolic pathways of eukaryotic cells, and formal methods for confronting models with known biological properties in different microenvironments. The formal model of the regulation of eukaryote metabolism defined and validated here reveals the conditions under which this metabolic phenotype switch occurs. It clearly proves that currently k... [more]
Study of Technological Process of Fermentation of Molasses Vinasse in Biogas Plants
Waclaw Romaniuk, Ivan Rogovskii, Victor Polishchuk, Liudmyla Titova, Kinga Borek, Serhiy Shvorov, Kamil Roman, Oleksiy Solomka, Svetlana Tarasenko, Volodimir Didur, Victor Biletskii
February 23, 2023 (v1)
Subject: Environment
Keywords: biogas, biogas plant, cattle manure, Fermentation, methane fermentation, methane tank, vinasse
The volume of ethanol production waste—molasses waste in Ukraine—reaches up to 4 million m3 per year. It is not easy to dispose of and is polluting the environment. Currently, the development of an effective technology for using molasses in biogas plants to obtain energy gas—biogas—is an urgent problem. The purpose of our work is to determine the rational volume of loading molasses bard into the methane tank in a quasi-continuous mode to obtain the maximum volume of biogas. To achieve this goal, the following experimental studies were carried out: mono-fermentation of molasses and combined fermentation of cattle manure and molasses on a laboratory biogas plant in a periodic mode; on the basis of the obtained laboratory studies, a special simulation model of biogas output during the quasi-continuous fermentation of substrates was established and the amount of molasses added to obtain the maximum biogas output was determined. The maximum output of biogas under the periodic system of load... [more]
Bioreactor Rhamnolipid Production Using Palm Oil Agricultural Refinery By-Products
Mohd Nazren Radzuan, James Winterburn, Ibrahim Banat
February 23, 2023 (v1)
Keywords: biorefinery, biosurfactant, Fermentation, Pseudomonas aeruginosa PAO1, rhamnolipid
Palm fatty acid distillate (PFAD) and fatty acid methyl ester (FAME) are used by P. aeruginosa PAO1 to produce rhamnolipid biosurfactant. The process of fermentation producing of biosurfactant was structured in a 2 L bioreactor using 2% of PFAD and FAME as carbon sources in minimal medium and with a nitrogen concentration of 1 g L−1. Mass spectrometry results show the crude biosurfactant produced was predominantly monorhamnolipid (Rha-C10-C10) and dirhamnolipid (Rha-Rha-C10-C10) at 503 and 649 m/z value for both substrates. Maximum production of crude rhamnolipid for PFAD was 1.06 g L−1 whereas for FAME it was 2.1 g L−1, with a reduction in surface tension of Tris-HCl pH 8.0 solution to 28 mN m−1 and a critical micelle concentration (CMC) of 26 mg L−1 measured for both products. Furthermore, the 24 h emulsification indexes in kerosene, hexadecane, sunflower oil, and rapeseed oil using 1 g L−1 of crude rhamnolipid were in the range 20−50%. Consequently, PFAD and FAME, by-products from t... [more]
Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry
Pedro Monteiro, Silvia Lomartire, João Cotas, Diana Pacheco, João C. Marques, Leonel Pereira, Ana M. M. Gonçalves
February 23, 2023 (v1)
Keywords: bioactive compounds, Fermentation, functional food, prebiotic, probiotic, seaweed
Seaweeds are gaining momentum as novel and functional food and feed products. From whole consumption to small bioactive compounds, seaweeds have remarkable flexibility in their applicability, ranging from food production to fertilizers or usages in chemical industries. Regarding food production, there is an increasing interest in the development of novel foods that, at the same time, present high nutritious content and are sustainably developed. Seaweeds, because they require no arable land, no usage of fresh water, and they have high nutritious and bioactive content, can be further explored for the development of newer and functional food products. Fermentation, especially performed by lactic acid bacteria, is a method used to produce functional foods. However, fermentation of seaweed biomass remains an underdeveloped topic that nevertheless demonstrates high potential for the production of new alimentary products that hold and further improve the organoleptic and beneficial propertie... [more]
Investigation and Characterisation of New Eco-Friendly Cosmetic Ingredients Based on Probiotic Bacteria Ferment Filtrates in Combination with Alginite Mineral
Pál Tóth, Áron Németh
February 21, 2023 (v1)
Subject: Environment
Keywords: alginite, Bifidobacterium adolescentis, cosmetic, Fermentation, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactococcus lactis, Limosilactobacillus reuteri
In light of the fact that three of the five healthiest meals on earth are fermented, fermentation came into focus of both customers, product developers, and researchers all around the world. Even in the cosmetics industry, fermented cosmetics have been increasingly introduced, creating a market emphasising the positive image that healthy fermented substances are environment-friendly and that it also aids skin health. Moreover, discovering usages for various naturally occurring organo-mineral rocks is a growing area of research. Thus, this study’s aim was to combine the benefits of alginite and Lactobacilli (LAB) for cosmetic applications and investigate their combined effect on the skin considering the fermentation parameters as well, such as biomass and lactic acid concentration. The examined LAB strains were Lactobacillus rhamnosus, Lactobacillus acidophilus, Limosilactobacillus reuteri, and Lactococcus lactis, and a non-LAB probiotic strain Bifidobacterium adolescentis was also stud... [more]
A Novel Method to Detoxify Steam-Exploded Biomass and Produce a Substrate for Biorefinery
Francesco Zimbardi, Egidio Viola, Giuseppe Arcieri, Vito Valerio, Massimo Carnevale
February 21, 2023 (v1)
Keywords: Biomass, detoxification, Fermentation, fluid bed, inhibitors, steam explosion
Pre-treatments at relatively high temperatures (range 160 °C−220 °C) are currently used to transform lignocellulosics into biofuels and chemicals. In this step, several molecules with an inhibitory effect in the subsequent fermentation processes are generated. These inhibitors include low-molecular-weight molecules and lignin fragments that can be removed by water washing. However, this procedure also removes valuable soluble carbohydrates which are then difficult to recover from the diluted stream. In this work, a new method to detoxify steam-exploded substrates is reported. The procedure is based on the evaporation of low-weight acids and aldehydes, which leaves all the sugars in the solid matrix, while the cellulose hornification (an irreversible modification of the cellulose fibres that depresses the saccharification yield) is prevented by adding steam to the hot fluidizing flow stream. Two systems were tested: a 0.1 kg/batch oscillating fluidized bed and a continuous fluidized bed... [more]
Comprehensive Review of Hydrothermal Pretreatment Parameters Affecting Fermentation and Anaerobic Digestion of Municipal Sludge
Farokh Laqa Kakar, Frew Tadesse, Elsayed Elbeshbishy
February 21, 2023 (v1)
Subject: Environment
Keywords: anaerobic digestion, biogas, Fermentation, hydrothermal pretreatment, thickened waste-activated sludge, volatile fatty acids
Municipal solid waste treatment and disposal have become one of the major concerns in waste management due to the excessive production of waste and higher levels of pollution. To address these challenges and protect the environment in sustainable ways, the hydrothermal pretreatment (HTP) technique coupled with anaerobic digestion (AD) becomes a preferred alternative technology that can be used for municipal solid waste stabilization and the production of renewable energy. However, the impact of HTP parameters such as temperature, retention time, pH, and solid content on the fermentation of TWAS is yet to be well studied and analyzed. Hence this study was conducted to review the effect of hydrothermal pretreatment of thickened waste-activated sludge (TWAS) on fermentation and anaerobic digestion processes. Many studies reported that fermentation of TWAS at pretreatment temperature ranges from 160 °C to 180 °C resulted in a 50% increase in volatile fatty acid (VFA) yields compared to no... [more]
Development and Validation of an Artificial Neural-Network-Based Optical Density Soft Sensor for a High-Throughput Fermentation System
Matthias Medl, Vignesh Rajamanickam, Gerald Striedner, Joseph Newton
February 21, 2023 (v1)
Keywords: artificial neural network, biopharmaceuticals, Fermentation, high-throughput, microbioreactor system, optical density (OD), recombinant protein, soft sensor
Optical density (OD) is a critical process parameter during fermentation, this being directly related to cell density, which provides valuable information regarding the state of the process. However, to measure OD, sampling of the fermentation broth is required. This is particularly challenging for high-throughput-microbioreactor (HT-MBR) systems, which require robotic liquid-handling (LiHa) systems for process control tasks, such as pH regulation or carbon feed additions. Bioreactor volume is limited and automated at-line sampling occupies the resources of LiHa systems; this affects their ability to carry out the aforementioned pipetting operations. Minimizing the number of physical OD measurements is therefore of significant interest. However, fewer measurements also result in less process information. This resource conflict has previously represented a challenge. We present an artificial neural-network-based soft sensor developed for the real-time estimation of the OD in an MBR syst... [more]
Biochemical and Microbiological Changes Associated with Fermentation of Durum Wheat for Lemzeïet Processing, a Traditional Algerian Fermented Food
Fatima Zohra Becila, Abdallah Bouasla, Christelle Turchiuli, Rania Boussekine, Farida Bekhouche, Agnieszka Wójtowicz
February 21, 2023 (v1)
Keywords: acid lactic bacteria, biochemical properties, durum wheat, Fermentation, Lemzeïet
In Algeria, “Lemzeïet” is prepared by the natural fermentation of wheat. This study aimed to follow the evolution of microbiological and biochemical properties of Lemzeïet with and without vinegar addition for 3, 6, 9 and 12 months. Lactic acid bacteria (LAB) were identified and the microbial count, as well as pH, acidity, protein, fat, ash and starch contents were determined. Results showed that Lemzeïet samples represented a safe product after the gradual absence of fungi. It also contained a significant load of LAB that were cocci or rods, white or yellow, grouped in chain, pair and tetrad. LAB isolates were mannitol positive, grew between 10 and 45 °C, showed resistance at 63.5 °C and the majority were homo-fermentative. Results showed a significant decrease in pH during fermentation regardless of the vinegar addition. Protein content increased up to 14.90% and 15.50% at the end of fermentation. The fat and starch contents decreased after 12 months of fermentation, regardless of th... [more]
Techno-Economic Analysis of a Hyaluronic Acid Production Process Utilizing Streptococcal Fermentation
Rafael G. Ferreira, Adriano R. Azzoni, Maria Helena Andrade Santana, Demetri Petrides
October 18, 2022 (v1)
Keywords: Fermentation, hyaluronic acid, process simulation, Streptococcus, Technoeconomic Analysis
Hyaluronic acid (HA) is a polysaccharide of alternating d-glucuronic acid and N-acetyl-d-glucosamine residues present in the extracellular matrix of connective, epithelial, and nervous tissues. Due to its singular hydrating, rheological and adhesive properties, HA has found numerous cosmetic and medical applications. However, techno-economic analyses of high value-added bioproducts such as HA are scarce in the literature. Here, we present a techno-economic analysis of a process for producing HA using Streptococcus zooepidemicus, simulated in SuperPro Designer. In the baseline scenario, HA is produced by batch fermentation, reaching 2.5 g/L after 24 h. It is then centrifuged, diafiltered, treated with activated carbon and precipitated with isopropanol. The product is suitable for topical formulations and its production cost was estimated as 1115 $/kg. A similar scenario, based on fed-batch culture and assuming a titer of 5.0 g/L, led to a lower cost of 946 $/kg. Moreover, in two additio... [more]
Biotransformation of Citrus Waste-I: Production of Biofuel and Valuable Compounds by Fermentation
Neelima Mahato, Kavita Sharma, Mukty Sinha, Archana Dhyani, Brajesh Pathak, Hyeji Jang, Seorin Park, Srinath Pashikanti, Sunghun Cho
October 13, 2022 (v1)
Subject: Other
Keywords: bio-waste, bioethanol, biofuel, biogas, biotransformation, citrus waste, Fermentation
Citrus is the largest grown fruit crop on the globe with an annual production of ~110−124 million tons. Approximately, 45−55% of the whole fruit post-processing is generally discarded as waste by the food processing industries. The waste is a huge problem to the environment in terms of land and water pollution along with displeasure from aesthetic viewpoint and spread of diseases owing to its huge content of fermentable sugars. The waste can be utilized as a raw material feedstock for producing a number of valuable chemicals and products, such as bioethanol, biogas, bio-oil, organic acids, enzymes, and so on. The production of these chemicals from waste biomass gives an inexpensive alternative to the harsh chemicals used during industrial synthesis processes as well as the possibility of controlling pollution from the waste discarded to the environment. The derived chemicals can be further utilized in the production of industrially important chemicals, as solvents and building blocks o... [more]
Case Study of Anaerobic Digestion Process Stability Detected by Dissolved Hydrogen Concentration
Daniela Platošová, Jiří Rusín, Jan Platoš, Kateřina Smutná, Roman Buryjan
January 24, 2022 (v1)
Keywords: amperometric sensor, anaerobic digestion, dissolved hydrogen, Fermentation, rotary bioreactor
The paper presents the results of a laboratory experiment of mesophilic single-stage anaerobic digestion performed to verify the possibility of early detection of process instability and reactor overload by evaluating the course of dissolved hydrogen concentration of the main intermediate. The digestion process was run in a Terrafors IS rotary drum bioreactor for 230 days. The substrate dosed on weekdays was food leftovers from the university canteen. At an average temperature of 37 °C, an organic loading of volatiles of 0.858 kg m−3 day−1 and a theoretical retention time of 259 days, biogas production of 0.617 Nm3 kg VS−1 was achieved with a CH4 content of 51.7 vol. %. The values of the established FOS/TAC stability indicator ranged from 0.26 to 11.4. The highest value was reached when the reactor was overloaded. The dissolved hydrogen concentration measured by the amperometric microsensor ranged from 0.039−0.425 mg dm−3. Data were statistically processed using Pearson’s correlation c... [more]
Study on the Extraction Technology of Candida antarctica Lipase B by Foam Separation
Wenyao Shao, Ying Lin, Yinghua Lu
September 16, 2021 (v1)
Subject: Biosystems
Keywords: enrichment ratio, Fermentation, foam separation, lipase, recovery rate, surfactant
Candida antarctica Lipase B (CALB) has a wide range of applications in many fields. In this study, Pichia pastoris was used to express CALB for fermentation tank culture. Sodium dodecyl sulfate (SDS) was used as a surfactant, and foam separation technology was used to explore the best experimental conditions for the harvest of CALB. The results showed that the optimal technological conditions for the foam separation and recovery of CALB were as follows: liquid volume was 150 mL, separating gas velocity was 600 mL/min, pH value was 7, and surfactant SDS concentration was 0.5 mg/mL. Under these conditions, the enrichment ratio of CALB was 0.95, and recovery rate R was 80.32%, respectively, indicating that the foam separation technology is feasible to extract lipase B.
The Effect of Deinking Process on Bioethanol Production from Waste Banknote Paper
Omid Yazdani Aghmashhadi, Ghasem Asadpour, Esmaeil Rasooly Garmaroody, Majid Zabihzadeh, Lisandra Rocha-Meneses, Timo Kikas
June 21, 2021 (v1)
Keywords: biorefinery, enzymatic hydrolysis, Fermentation, lignocellulose, pretreatment, zero-waste
The aim of this paper is to study the effect of reinking and pretreatment of waste banknote paper on its usability in the bioethanol production process. To this end, the tensile strength of worn banknote paper was first studied at different pH values. The sample with the lowest tensile strength was considered for the next sections. In the deinking process, NaOH at different concentrations (1%, 2%, 3%, and 4%) and in combination with ultrasonic treatment was applied. After deinking the pulp, two acidic and alkaline chemical pretreatments with concentrations of 1%, 2%, 3%, and 4% were used independently and in combination with ultrasonic. Enzymatic hydrolysis, following fermentation with Scheffersomyces stipitis, and crystallinity measurements were used to confirm the efficiency of the pretreatments. RSM Design Expert software was used to determine the optimal values by considering the three variables—enzyme loading, ultrasonic loading, and contact time for waste paper deinked (WPD) and... [more]
Aspen Plus Simulations of Acetone-Butanol-Ethanol Separation and Recovery Processes
Giancarlo Dalle Ave, Thomas A Adams II
April 27, 2021 (v1)
Keywords: 2-ethyl-hexanol, Acetone-Butanol-Ethanol, Aspen Plus, Decane, Decanol, Extracton, Fermentation, Hexanol, Oleyl Alcohol, Simulation
This is a collection of Aspen Plus v8.8 Simulation Files that were used to conduct the research published in Dalle Ave G, Adams TA II, "Techno-economic comparison of Acetone-Butanol-Ethanol fermentation using various extractants", Energy Conversion and Management, Volume 156, 15 January 2018, Pages 288-300. The LAPSE postprint of this work is available at LAPSE:2018.0132.

Each simulation file contains a flowsheet model of the process to recover acetone, butanol, and ethanol from the ABE fermentation broth for the following case studies:

1. Direct distillation of the ABE Broth
2. Product extraction and purification from ABE Broth using 2-Ethyl-1-Hexanol
3. Product extraction and purification from ABE Broth using Decane
4. Product extraction and purification from ABE Broth using Decanol
5. Product extraction and purification from ABE Broth using Hexanol
6. Product extraction and purification from ABE Broth using Mesitylene
7. Product extraction and purification from ABE... [more]
Production of Hydrogen Sulfide by Fermentation in Rumen and Its Impact on Health and Production of Animals
Ali Mujtaba Shah, Jian Ma, Zhisheng Wang, Rui Hu, Xueying Wang, Quanhui Peng, Felix Kwame Amevor, Naqash Goswami
April 16, 2021 (v1)
Keywords: animal health, Fermentation, hydrogen sulfide, rumen, ruminants
Hydrogen sulfide is a Janus-faced molecule with many beneficial and toxic effects on the animal health. In ruminants, rumen fermentation plays a vital role in the digestion and absorption of nutrients. During rumen fermentation, the production of hydrogen sulfide can occur, and it can be rapidly absorbed into the body of the animals through the intestinal wall. If the production of hydrogen sulfide concentration is higher in the rumen, it can cause a toxic effect on ruminants known as poliomyelitis. The production of hydrogen sulfide depends on the population of sulfate-reducing bacteria in the rumen. In rodents, H2S maintains the normal physiology of the gastrointestinal tract and also improves the healing of the chronic gastric ulcer. In the gut, H2S regulates physiological functions such as inflammation, ischemia−reperfusion injury and motility. In this review article, we summarize the toxicity occurrence in the body of animals due to high levels of hydrogen sulfide production and a... [more]
Impact of Fermentation Processes on the Bioactive Profile and Health-Promoting Properties of Bee Bread, Mead and Honey Vinegar
Rodica Mărgăoan, Mihaiela Cornea-Cipcigan, Erkan Topal, Mustafa Kösoğlu
February 22, 2021 (v1)
Keywords: bee bread, Fermentation, health benefits, honey vinegar, lactic acid bacteria, mead, volatile compounds
Recently, an increasing interest is paid to bee products obtained as a result of the fermentation process. Some of them can be consumed directly (bee-collected pollen, honey, bee bread etc.), while others are the result of lactic and/or acid fermentation (honey vinegar and honey wine). Bee bread is the result of pollens’ lactic fermentation, whereas mead is obtained by honeys’ lactic fermentation. Moreover, as a result of honey acetic acid fermentation, honey vinegar is obtained. Sensory characteristics and aroma composition have been scarcely studied, which may depend on the starter culture and fermentation process. Along with the medicinal properties they are a vital resource for future researches as they are of particular importance in the food market. In this review, we discuss the aroma-active compounds, taste, and sensorial characteristics of fermented bee products along with the approaches that can be developed for the flavor improvement based on existing technologies. Furthermo... [more]
Application of Novel Techniques for Monitoring Quality Changes in Meat and Fish Products during Traditional Processing Processes: Reconciling Novelty and Tradition
Abdo Hassoun, María Guðjónsdóttir, Miguel A. Prieto, Paula Garcia-Oliveira, Jesus Simal-Gandara, Federico Marini, Francesca Di Donato, Angelo Antonio D’Archivio, Alessandra Biancolillo
December 22, 2020 (v1)
Keywords: control, curing, drying, Fermentation, muscle foods, preservation, process optimization, spectroscopy
In this review, we summarize the most recent advances in monitoring changes induced in fish and other seafood, and meat and meat products, following the application of traditional processing processes by means of conventional and emerging advanced techniques. Selected examples from the literature covering relevant applications of spectroscopic methods (i.e., visible and near infrared (VIS/NIR), mid-infrared (MIR), Raman, nuclear magnetic resonance (NMR), and fluorescence) will be used to illustrate the topics covered in this review. Although a general reluctance toward using and adopting new technologies in traditional production sectors causes a relatively low interest in spectroscopic techniques, the recently published studies have pointed out that these techniques could be a powerful tool for the non-destructive monitoring and process optimization during the production of muscle food products.
Model-Based Process Optimization for the Production of Macrolactin D by Paenibacillus polymyxa
Dominik Krämer, Terrance Wilms, Rudibert King
October 6, 2020 (v1)
Keywords: Fermentation, multi-model approach, NIR spectroscopy, nonlinear state estimation, online optimization
In this study, we show the successful application of different model-based approaches for the maximizing of macrolactin D production by Paenibacillus polymyxa. After four initial cultivations, a family of nonlinear dynamic biological models was determined automatically and ranked by their respective Akaike Information Criterion (AIC). The best models were then used in a multi-model setup for robust product maximization. The experimental validation shows the highest product yield attained compared with the identification runs so far. In subsequent fermentations, the online measurements of CO2 concentration, base consumption, and near-infrared spectroscopy (NIR) were used for model improvement. After model extension using expert knowledge, a single superior model could be identified. Model-based state estimation with a sigma-point Kalman filter (SPKF) was based on online measurement data, and this improved model enabled nonlinear real-time product maximization. The optimization increased... [more]
Showing records 51 to 75 of 83. [First] Page: 1 2 3 4 Last
[Show All Keywords]