Browse
Keywords
Records with Keyword: Batch Distillation
An Experimental Study of a Wine Batch Distillation in a Copper Pot Still Heated by Gas
Marie Rougier, Jérôme Bellettre, Lingai Luo
April 20, 2023 (v1)
Subject: Environment
Keywords: Batch Distillation, energy balance, experimental analysis, thermal efficiency
Wine batch distillation in a copper pot still heated directly by combustion is unusual. It is a niche sector. Few studies are available on the subject and even fewer have studied it from a thermal point of view. In a context of ecology awareness and regularly increasing gas taxes, finding less energy consuming and more performing solutions has become necessary. Two methods already exist to recover energy for such pot stills, however improvements could be made. The present study focuses on the heating zone of an experimental pot still. First, a thermal diagnosis based on a nodal model is conducted in transient regime. The major sites of energy expenditure and waste are thus identified and quantified. Results highlight significant losses both in combustion smoke and by conduction to the environment resulting from a limited thermal performance of the system. Proposals are then made to enhance it. For instance, the preheating could be optimized and more thermal waste could be recovered.
Non-Conventional Cuts in Batch Distillation to Brazilian Spirits (cachaça) Production: A Computational Simulation Approach
Lhucas M. S. Tenorio, Fabio R. M. Batista, Simone Monteiro
February 17, 2023 (v1)
Keywords: Aspen Plus, Batch Distillation, Ethanol, thermodynamic, vapor–liquid equilibria
In this work, an algorithm was developed to determine different possibilities of distillation cuts to support productivity and improve the final quality of cachaça, a Brazilian spirit beverage. The distillation process was simulated using the Aspen Plus® software, considering a wide range of fermented musts compositions available in the literature obtained by fermentation with different yeast strains. Twenty-four simulations were carried out considering eight compounds as follows: water and ethanol (major compounds); acetic acid, acetaldehyde, ethyl acetate, 1-propanol, isobutanol, and isoamyl alcohol (minor compounds). The calculations considered a long-time process, i.e., until almost all the ethanol in the fermented must was distilled. The algorithm enabled the identification of countless distilling cuts, resulting in products with different alcoholic grades and process yields. One fermented must became viable to produce cachaça after the suggested non-traditional method of cuts pro... [more]
[Show All Keywords]