Browse
Records Added in 2021
Records added in 2021
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025
Filter by month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 51 to 75 of 798. [First] Page: 1 2 3 4 5 6 7 Last
Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production
Laura Acosta, Dahiana Galeano-Caro, Oscar E. Medina, Farid B. Cortés, Camilo A. Franco
October 14, 2021 (v1)
Keywords: activated carbon, Adsorption, Catalysis, coffee residue, crude oil, magnetite nanoparticles
This work focused on evaluating the adsorptive removal of crude oil using a nano-intermediate based on magnetite nanoparticles supported on activated carbon synthesized from spent coffee grounds and the subsequent catalytic oil decomposition to recover by-products and regenerate the support material. The magnetite nanoparticles were synthesized by the co-precipitation method and were used as active phases on prepared activated carbon. The amount of crude oil adsorbed was determined by adsorption isotherms. In addition, dynamic tests were performed on a packed bed to evaluate the efficiency of the removal process. Thermogravimetric analysis and mass spectrometry were used to evaluate the catalytic powder and the quantification of by-products. Contrasting the results with commercial carbon, the one synthesized from the coffee residue showed a greater affinity for the oil. Likewise, the adsorption capacity increased by doping activated carbon with magnetite nanoparticles, obtaining an eff... [more]
Modified Multi-Crossover Operator NSGA-III for Solving Low Carbon Flexible Job Shop Scheduling Problem
Xingping Sun, Ye Wang, Hongwei Kang, Yong Shen, Qingyi Chen, Da Wang
October 14, 2021 (v1)
Keywords: co-evolution, flexible job shop scheduling problem, Genetic Algorithm, low carbon, multi-crossover operator, multi-objective optimization
Low carbon manufacturing has received increasingly more attention in the context of global warming. The flexible job shop scheduling problem (FJSP) widely exists in various manufacturing processes. Researchers have always emphasized manufacturing efficiency and economic benefits while ignoring environmental impacts. In this paper, considering carbon emissions, a multi-objective flexible job shop scheduling problem (MO-FJSP) mathematical model with minimum completion time, carbon emission, and machine load is established. To solve this problem, we study six variants of the non-dominated sorting genetic algorithm-III (NSGA-III). We find that some variants have better search capability in the MO-FJSP decision space. When the solution set is close to the Pareto frontier, the development ability of the NSGA-III variant in the decision space shows a difference. According to the research, we combine Pareto dominance with indicator-based thought. By utilizing three existing crossover operators... [more]
Integration of a Combined Cycle Power Plant with MED-RO Desalination Based on Conventional and Advanced Exergy, Exergoeconomic, and Exergoenvironmental Analyses
Mohammad Hasan Khoshgoftar Manesh, Reza Shojaei Ghadikolaei, Hossein Vazini Modabber, Viviani Caroline Onishi
October 11, 2021 (v1)
Keywords: advanced exergy analysis, combined cycle power plant (CCPP), desalination, exergoeconomic analysis, exergoenvironmental analysis, mathematical modelling and simulation, multi-effect distillation (MED), reverse osmosis (RO), water and power production
The ever-increasing world population, change in lifestyle, and limited natural water and energy resources have made industrial seawater desalination plants the leading contenders for cost-efficient freshwater production. In this study, the integration of a combined cycle power plant (CCPP) with multi-effect distillation (MED) and reverse osmosis (RO) desalination units is investigated through comprehensive conventional and advanced exergy, exergoeconomic, and exergoenvironmental analyses. Firstly, the thermodynamic modelling of the CCPP is performed by using a mathematical programming procedure. Then, a mathematical model is developed for the integration of the existing CCPP plant with MED and RO desalination units. Finally, conventional and advanced exergy, exergoeconomic, and exergoenvironmental analyses are carried out to assess the main performance parameters of the integrated CCPP and MED-RO desalination system, as well as to identify potential technical, economic, and environment... [more]
A Discrete Element Method Study of Solids Stress in Cylindrical Columns Using MFiX
Filippo Marchelli, Renzo Di Felice
October 11, 2021 (v1)
Keywords: Coulomb friction force, discrete element method, Janssen effect, solids pressure
Friction phenomena play a key role in discrete element method (DEM) modeling. To analyze this aspect, we employed the open-source program MFiX to perform DEM simulations of cylindrical vertical columns filled with solid particles. These are still associated with and described by the pioneering model by the German engineer H.A. Janssen. By adapting the program’s code, we were able to gather numerous insights on the stress distribution within the solids. The column was filled with different amounts of solids and, after the system had stabilized, we assessed the pressure in the vertical and radial directions and the distribution of the friction force for all particles. An analysis of the bottom pressure for varying particle loads allowed us to infer that the program can correctly predict the expected asymptotical behavior. After a detailed assessment of the behavior of a single system, we performed a sensitivity analysis taking into account several of the variables employed in the simulat... [more]
Kanchan Arsenic Filters and the Future of Fe0-Based Filtration Systems for Single Household Drinking Water Supply
Zhe Huang, Viet Cao, Esther Laurentine Nya, Willis Gwenzi, Chicgoua Noubactep
October 11, 2021 (v1)
Subject: Materials
Keywords: arsenic removal, groundwater contamination, household filter, removal efficiency, zero-valent iron
Biological and chemical contamination of natural water bodies is a global health risk for more than one billion people, mostly living in low-income countries. Innovative, affordable, and efficient decentralized solutions for safe drinking water supply are urgently needed. Metallic iron (Fe0)-based filtration systems have been described as such an appropriate solution. This communication focuses on the Kanchan arsenic filter (KAF), presented in the early 2000s and widely assessed during the past decade. The KAF contains iron nails as the Fe0 source and is primarily designed to remove As from polluted tube well waters. Recent independent works assessing their performance have all reported on a high degree of variability in efficiency depending mostly on the following factors: (1) the current operating conditions, (2) the design, and (3) the groundwater chemistry. This communication shows that the major problems of the KAF are two-fold: (1) a design mistake as the Fe0 units disturb the op... [more]
Fabrication and Analysis of Polydimethylsiloxane (PDMS) Microchannels for Biomedical Application
Shahzadi Tayyaba, Muhammad Waseem Ashraf, Zubair Ahmad, Ning Wang, Muhammad Javaid Afzal, Nitin Afzulpurkar
October 11, 2021 (v1)
Subject: Biosystems
Keywords: biocompatibility, curvilinear microchannel, fuzzy, internet of things (IoT), polydimethylsiloxane (PDMS), sterilization
In this research work, Polydimethylsiloxane (PDMS) has been used for the fabrication of microchannels for biomedical application. Under the internet of things (IoT)-based controlled environment, the authors have simulated and fabricated bio-endurable, biocompatible and bioengineered PDMS-based microchannels for varicose veins implantation exclusively to avoid tissue damaging. Five curved ascending curvilinear micro-channel (5CACMC) and five curved descending curvilinear micro-channels (5CDCMC) are simulated by MATLAB (The Math-Works, Natick, MA, USA) and ANSYS (ANSYS, The University of Lahore, Pakistan) with actual environments and confirmed experimentally. The total length of each channel is 1.6 cm. The diameter of both channels is 400 µm. In the ascending channel, the first to fifth curve cycles have the radii of 2.5 mm, 5 mm, 7.5 mm, 10 mm, and 2.5 mm respectively. In the descending channel, the first and second curve cycles have the radii of 12.5 mm and 10 mm respectively. The thir... [more]
Modeling the Spread of Epidemics Based on Cellular Automata
Jindong Dai, Chi Zhai, Jiali Ai, Jiaying Ma, Jingde Wang, Wei Sun
October 11, 2021 (v1)
Keywords: cellular automata, dynamic simulation, mathematical model, process system engineering
Mathematical modeling is a powerful tool to study the process of the spread of infectious diseases. Among various mathematical methods for describing the spread of infectious diseases, the cellular automaton makes it possible to explicitly simulate both the spatial and temporal evolution of epidemics with intuitive local rules. In this paper, a model is proposed and realized on a cellular automata platform, which is applied to simulate the spread of coronavirus disease 2019 (COVID-19) for different administrative districts. A simplified social community is considered with varying parameters, e.g., sex ratio, age structure, population movement, incubation and treatment period, immunity, etc. COVID-19 confirmation data from New York City and Iowa are adopted for model validation purpose. It can be observed that the disease exhibits different spread patterns in different cities, which could be well accommodated by this model. Then, scenarios under different control strategies in the next... [more]
Expression of the Thermobifida fusca β-1,3-Glucanase in Yarrowia lipolytica and Its Application in Hydrolysis of β-1,3-Glucan from Four Kinds of Polyporaceae
Wei-Lin Chen, Jo-Chieh Hsu, Chui-Li Lim, Cheng-Yu Chen, Chao-Hsun Yang
October 11, 2021 (v1)
Subject: Biosystems
Keywords: antioxidant activity, Pycnoporus sanguineus, Thermobifida fusca, Wolfiporia cocos, Yarrowia lipolytica, β-1,3-glucanase
The gene encoding a thermostable β-1,3-glucanase was cloned from Thermobifida fusca and expressed constitutively by Yarrowia lipolytica using plasmid pYLSC1. The expression level of the recombinant β-1,3-glucanase reached up to 270 U/mL in the culture medium. After a treatment with endo-β-N-acetyl-glucosaminidase H, the recombinant protein appeared as a single protein band, with a molecular size of approximately 66 kDa on the SDS-polyacrylamide gel. The molecular weight was consistent with the size predicted from the nucleotide sequence. The optimum temperature and pH of the transformant β-1,3-glucanase were 60 °C and pH 8.0, respectively. This β-1,3-glucanase was tolerant to 10% methanol, ethanol, and DMSO, retaining 70% activity. The enzyme markedly hydrolyzed Wolfiporia cocos and Pycnoporus sanguineus glucans. The DPPH and ABTS scavenging potential, reducing power and total phenolic contents of these two Polyporaceae hydrolysates, were significantly increased after 18 h of the enzym... [more]
Reversible Bonding of Thermoplastic Elastomers for Cell Patterning Applications
Byeong-Ui Moon, Keith Morton, Kebin Li, Caroline Miville-Godin, Teodor Veres
October 11, 2021 (v1)
Subject: Biosystems
Keywords: cell migration, cell patterning, reversible bonding, thermoplastic elastomers
In this paper, we present a simple, versatile method that creates patterns for cell migration studies using thermoplastic elastomer (TPE). The TPE material used here can be robustly, but reversibly, bonded to a variety of plastic substrates, allowing patterning of cultured cells in a microenvironment. We first examine the bonding strength of TPE to glass and polystyrene substrates and com-pare it to thermoset silicone-based PDMS under various conditions and demonstrate that the TPE can be strongly and reversibly bonded on commercially available polystyrene culture plates. In cell migration studies, cell patterns are templated around TPE features cored from a thin TPE film. We show that the significance of fibroblast cell growth with fetal bovine serum (FBS)-cell culture media compared to the cells cultured without FBS, analyzed over two days of cell culture. This simple approach allows us to generate cell patterns without harsh manipulations like scratch assays and to avoid damaging th... [more]
Identification of Penicillium verrucosum, Penicillium commune, and Penicillium crustosum Isolated from Chicken Eggs
Soňa Demjanová, Pavlina Jevinová, Monika Pipová, Ivana Regecová
October 11, 2021 (v1)
Keywords: colony morphology, creatine, egg, Ehrlich reaction, mold, PCR, PCR-ITS-RFLP, Penicillium, restriction enzyme
Penicillium species belong to main causative agents of food spoilage leading to significant economic losses and potential health risk for consumers. These fungi have been isolated from various food matrices, including table eggs. In this study, both conventional Polymerase Chain Reaction (PCR) and Polymerase Chain Reaction-Internal Transcribed Spacer-Restriction Fragment Length Polymorphism (PCR-ITS-RFLP) methods were used for species identification of Penicillium (P.) spp. isolated from the eggshells of moldy chicken eggs. Seven restriction endonucleases (Bsp1286I, XmaI, HaeIII, HinfI, MseI, SfcI, Hpy188I) were applied to create ribosomal restriction patterns of amplified ITS regions. To identify P. verrucosum, P. commune, and P. crustosum with the help of conventional PCR assay, species-specific primer pairs VERF/VERR, COMF/COMR, and CRUF/CRUR were designed on the base of 5.8 subunit-Internal Transcribed Spacer (5.8S-ITS) region. Altogether, 121 strains of microscopic filamentous fun... [more]
Modeling and Flowsheet Simulation of Vibrated Fluidized Bed Dryers
Soeren E. Lehmann, Moritz Buchholz, Alfred Jongsma, Fredrik Innings, Stefan Heinrich
October 11, 2021 (v1)
Keywords: drying kinetics, Dyssol, flowsheet simulation, fluidized bed drying, Modelling, vibrated fluidized bed
Drying in fluidized beds is an important step in the production of powdered materials. Especially in the food and pharmaceutical industry, fluidized bed dryers are often vibrated to improve the drying process. In the current work, a continuous fluidized bed drying model is implemented in the novel, open-source flowsheet simulation framework Dyssol. The new model accounts for the hydrodynamic characteristics of all Geldart groups as well as the impact of mechanical vibration on the drying process. Distributed particle properties are considered by the model. Comprehensive validation of the model was conducted for a wide range of process parameters, different materials, dryer geometries and dimensions as well as the impact of vibration. Particle properties are predicted accurately and represent the broad experimental data well. A sensitivity analysis of the model confirmed grid independence and the validity of underlying model assumptions.
Integrating FMEA and the Kano Model to Improve the Service Quality of Logistics Centers
Ling-Lang Tang, Shun-Hsing Chen, Chia-Chen Lin
October 11, 2021 (v1)
Keywords: failure mode and effect analysis (FMEA), Kano model, logistics center, service failure, service quality
This study uses the logistics center of a large organic retail store in Taiwan to analyze service blueprint and workflow, identifying the potential points of failure and thus serving as a basis for quality improvement. The failure mode and effect analysis (FMEA) model is an effective problem prevention methodology that can easily interface with many engineering and reliability methods. The utilized method integrates the failure mode and effect analysis (FMEA) and the Kano model to explore the possible occurrence of failures in the internal workflow and services of the studied logistics center. A two-stage survey was conducted. In the first stage, an investigation was conducted by 20 logistics experts on the FMEA’s key service failures. In the second stage, a questionnaire was filled out by 220 store staff to summarize the logistics service quality factors found in the Kano model. The results show that the degree of attention and satisfaction in the priority improvement items when there... [more]
Solubility Data of Potential Salts in the MgO-CaO-SO2-H2O-O2 System for Process Modeling
Barbara D. Weiß, Michael Harasek
September 22, 2021 (v1)
Keywords: hydroxides, magnesium hydroxide slurry, precipitation, SO2 absorption, solid-liquid phase equilibria, sulfates, sulfites
This review studies unwanted precipitation reactions, which can occur in SO2 absorption processes using a magnesium hydroxide slurry. Solubility data of potential salts in the MgO-CaO-SO2-H2O system are evaluated. The reviewed data can serve as a reliable basis for process modeling of this system used to support the optimization of the SO2 absorption process. This study includes the solubility data of MgSO3, MgSO4, Mg(OH)2, CaSO3, CaSO4, and Ca(OH)2 as potential salts. The solubility is strongly dependent on the state of the precipitated salts. Therefore, this review includes studies on the stability of different forms of the salts under different conditions. The solubility data in water over temperature serve as a base for modeling the precipitation in such system. Furthermore, influencing factors such as pH value, SO2 content and the co-existence of other salts are included and available data on such dependencies are reviewed. Literature data evaluated by the International Union of P... [more]
Lithium-Ion Batteries as Ignition Sources in Waste Treatment Processes—A Semi-Quantitate Risk Analysis and Assessment of Battery-Caused Waste Fires
Thomas Nigl, Mirjam Baldauf, Michael Hohenberger, Roland Pomberger
September 22, 2021 (v1)
Keywords: fire hazards, lithium batteries, portable batteries, risk modelling, waste management
Increasing occurrences of waste fires that are caused by improperly discarded lithium-based portable batteries threaten the whole waste management sector in numerous countries. Studies showed that high quantities of these batteries have been found in several municipal solid waste streams in recent years in Austria. This article reveals the main influence factors on the risk of lithium-based batteries in their end-of-life and it focuses on the quantification of damages to portable batteries during waste treatment processes. Hazards are identified and analysed and potential risks in waste management systems are comprehensively assessed. In two scenarios, the results showed that the potential risks are too high to maintain a sustainable form of waste management. According to the assessment, a small fire in a collection vehicle is located in the risk graph’s yellow region (as low as reasonably practicable, ALARP), while a fully developed fire in a treatment plant has to be classified as an... [more]
Biomethanation Potential (BMP) Study of Mesophilic Anaerobic Co-Digestion of Abundant Bio-Wastes in Southern Regions of Tunisia
Mawaheb Mouftahi, Nawel Tlili, Nejib Hidouri, Pietro Bartocci, Khalideh Al bkoor Alrawashdeh, Eid Gul, Federica Liberti, Francesco Fantozzi
September 22, 2021 (v1)
Subject: Energy Policy
Keywords: anaerobic digestion, bio-methane potential, biogas, organic wastes
Tunisia is a country that suffers from energy demand problems and environmental matters. Thus, Tunisian authorities desire to encourage the development of renewable energy sources, especially from biological processes, like anaerobic digestion. Therefore, this study is focused on the evaluation of biogas and bio-methane yield from the co-digestion of three available and abundant bio-wastes in the southern regions of Tunisia. The three different raw materials are an organic fraction of municipal solid waste, chicken manure, and olive mill wastewater. In this context, experimental work to evaluate the potential of biogas and bio-methane production was carried out at mesophilic temperature 35 °C and batch mode. The present work highlights the possibility of generating biogas from these organic wastes and reducing the amounts of the wastes to dispose of in landfills. The experimental study of the co-digestion process under specific conditions of carbon to nitrogen ratio (C/N), T, pH, and i... [more]
Demineralization of Food Waste Biochar for Effective Alleviation of Alkali and Alkali Earth Metal Species
Yoonah Jeong, Ye-Eun Lee, Dong-Chul Shin, Kwang-Ho Ahn, Jinhong Jung, I-Tae Kim
September 22, 2021 (v1)
Keywords: AAEM, ash, biochar, demineralization, food waste, pyrolysis
Ash-related issues from a considerable amount of alkali and alkaline earth metal species in biochar are major obstacles to the widespread application of biomass in thermoelectric plants. In this study, food wastes were converted into biochar through pyrolysis at 450 °C or 500 °C and four different demineralization approaches, using deionized water, citric acid, nitric acid, and CO2 saturated water. The chemical properties of the resulting biochars were investigated, including proximate analysis, concentrations of inorganic species in biochar and ash, and the crystalline structure. All demineralization treatments produced food waste biochar with sufficient calorific value (>4000 kcal/kg) and a chlorine concentration <0.5%. Among the inorganic species in biochar, Na and K exhibited a significantly higher removal rate through demineralization, which ranged from 54.1%−85.6% and 53.6%−89.9%, respectively; the removal rates of Ca and Mg were lower than 50.0%. The demineralization method w... [more]
Hydrodynamic and Mass Transfer in the Desorption Process of CO2 Gas in a Packed-Bed Stripper
Pao Chi Chen, Ming-Wei Yang, Yan-Lin Lai
September 22, 2021 (v1)
Keywords: hydrodynamic, mass transfer, stripper
A lab-scale packed-bed stripper containing Dixon rings was used to explore the effects of the process variables on the hydrodynamics and mass-transfer in a stripper using a mixed solvent loaded CO2. The variables are the liquid flow rate, reboiler temperature, and amine concentration, and the hydrodynamic and mass-transfer data can be determined using different models. In the case of hydrodynamics, the dimensionless pressure drop at the flooding point and the total pressure drop were explored first. In the case of mass-transfer, the correlation of the mass-transfer coefficient and the parameter importance were also observed. In addition, the number of plates per meter can be compared with the Dixon rings manufacturer. Finally, the performances of a mixed solvent and monoethanolamine (MEA) solvent were also discussed.
Cancer Stem Cell Microenvironment Models with Biomaterial Scaffolds In Vitro
Ghmkin Hassan, Said M. Afify, Shiro Kitano, Akimasa Seno, Hiroko Ishii, Yucheng Shang, Michiya Matsusaki, Masaharu Seno
September 22, 2021 (v1)
Subject: Biosystems
Keywords: biomaterial scaffolds, cancer stem cells, drug screening, tumor microenvironment
Defined by its potential for self-renewal, differentiation and tumorigenicity, cancer stem cells (CSCs) are considered responsible for drug resistance and relapse. To understand the behavior of CSC, the effects of the microenvironment in each tissue are a matter of great concerns for scientists in cancer biology. However, there are many complicated obstacles in the mimicking the microenvironment of CSCs even with current advanced technology. In this context, novel biomaterials have widely been assessed as in vitro platforms for their ability to mimic cancer microenvironment. These efforts should be successful to identify and characterize various CSCs specific in each type of cancer. Therefore, extracellular matrix scaffolds made of biomaterial will modulate the interactions and facilitate the investigation of CSC associated with biological phenomena simplifying the complexity of the microenvironment. In this review, we summarize latest advances in biomaterial scaffolds, which are explo... [more]
Numerical and Experimental Investigation on Key Parameters of the Respimat® Spray Inhaler
Yi Ge, Zhenbo Tong, Renjie Li, Fen Huang, Jiaqi Yu
September 22, 2021 (v1)
Keywords: parameters of aerosol, plume geometry, spray inhaler, volume of fluid (VOF) method
Respimat®Soft MistTM is a newly developed spray inhaler. Different from traditional nebulizers, metered-dose inhalers, and dry powder inhalers, this new type of inhaler can produce aerosols with long duration, relatively slow speed, and a high content of fine particles. Investigating the effect of the key geometric parameters of the device on the atomization is of great significance for generic product development and inhaler optimization. In this paper, a laser high-speed camera experimental platform is built, and important parameters such as the geometric pattern and particle size distribution of the Respimat®Soft MistTM are measured. Computational fluid dynamics (CFD) and the volume of fluid method coupled with the Shear Stress Transport (SST) k-ω turbulence model are applied to simulate the key geometric parameters of the device. The effects of geometric parameters on the spray velocity distribution and geometric pattern are obtained. The angle of flow collision, the sphere size of... [more]
Thermophilic Anaerobic Digestion of Second Cheese Whey: Microbial Community Response to H2 Addition in a Partially Immobilized Anaerobic Hybrid Reactor
Giuseppe Lembo, Silvia Rosa, Valentina Mazzurco Miritana, Antonella Marone, Giulia Massini, Massimiliano Fenice, Antonella Signorini
September 22, 2021 (v1)
Subject: Biosystems
Keywords: anaerobic hybrid reactor, cheese whey, in situ hydrogen addition, microbial community, thermophilic anaerobic digestion
In this study, we investigated thermophilic (55 °C) anaerobic digestion (AD) performance and microbial community structure, before and after hydrogen addition, in a novel hybrid gas-stirred tank reactor (GSTR) implemented with a partial immobilization of the microbial community and fed with second cheese whey (SCW). The results showed that H2 addition led to a 25% increase in the methane production rate and to a decrease of 13% in the CH4 concentration as compared with the control. The recovery of methane content (56%) was reached by decreasing the H2 flow rate. The microbial community investigations were performed on effluent (EF) and on interstitial matrix (IM) inside the immobilized area. Before H2 addition, the Anaerobaculaceae (42%) and Lachnospiraceae (27%) families dominated among bacteria in the effluent, and the Thermodesulfobiaceae (32%) and Lachnospiraceae (30%) families dominated in the interstitial matrix. After H2 addition, microbial abundance showed an increase in the ba... [more]
Evaluation of Novel Bio-Based Amino Curing Agent Systems for Epoxy Resins: Effect of Tryptophan and Guanine
Stefano Merighi, Laura Mazzocchetti, Tiziana Benelli, Loris Giorgini
September 22, 2021 (v1)
Keywords: DSC, epoxy resin, guanine, hardener system, renewable material, tryptophan
In order to obtain an environmentally friendly epoxy system, L-tryptophan and guanine were investigated as novel green curing agents for the cross-link of diglycidyl ether of Bisphenol A (DGEBA) as a generic epoxy resin model of synthetic and analogous bio-based precursors. In particular, L-tryptophan, which displays high reaction temperature with DGEBA, was used in combination with various bio-based molecules such as urea, theobromine, theophylline, and melamine in order to increase the thermal properties of the epoxy resin and to reduce the crosslinking reaction temperature. Later, in order to obtain similar properties using a single product, guanine, a totally heterocyclic molecule displaying amine functional groups, was tested as hardener for DGEBA. The thermal behavior of the precursor mixtures was evaluated by dynamic differential scanning calorimetry (DSC) leading to a preliminary screening of different hardening systems which offered a number of interesting hints in terms of bi... [more]
Task Scheduling Problem of Double-Deep Multi-Tier Shuttle Warehousing Systems
Xiangnan Zhan, Liyun Xu, Xufeng Ling
September 22, 2021 (v1)
Keywords: carbon emissions, double-deep multi-tier shuttle warehousing systems, NSGA-II, rearrangement operation, system efficiency, task scheduling
Double-deep multi-tier shuttle warehousing systems (DMSWS) have been increasingly applied for store-and-retrieval stock-keeping unit tasks, with the advantage of a reduced number of aisles and improved space utilization. Scheduling different devices for retrieval tasks to increase system efficiency is an important concern. In this paper, a Pareto optimization model of task operations based on the cycle time and carbon emissions is presented. The impact of the rearrangement operation is considered in this model. The cycle time model is converted into a flow-shop scheduling model with parallel machines by analyzing the retrieval operation process. Moreover, the carbon emissions of the shuttle in the waiting process, the carbon emissions of the lift during the free process, and the carbon emissions of the retrieval operation are considered in the carbon emissions model, which can help us to evaluate the carbon emissions of the equipment more comprehensively during the entire retrieval tas... [more]
Building Robust Closed-Loop Supply Networks against Malicious Attacks
Ding-Shan Deng, Wei Long, Yan-Yan Li, Xiao-Qiu Shi
September 22, 2021 (v1)
Keywords: closed-loop supply network, malicious attacks, multi-population evolutionary algorithm, robustness
With recent industrial upgrades, it is essential to transform the current forward supply networks (FSNs) into closed-loop supply networks (CLSNs), which are formed by the integration of forward and reverse logistics. The method chosen in this paper for building reverse logistics is to add additional functions to the existing forward logistics. This process can be regarded as adding reverse edges to the original directed edges in an FSN. Due to the limitation of funds and the demand for reverse flow, we suppose that a limited number of reverse edges can be built in a CLSN. To determine the transformation schemes with excellent robustness against malicious attacks, this paper proposes a multi-population evolutionary algorithm with novel operators to optimize the robustness of the CLSN, and this algorithm is abbreviated as MPEA-RSN. Then, both the generated and realistic SNs are taken as examples to validate the effectiveness of MPEA-RSN. The simulation results show that the index R, intr... [more]
Advances and Gaps in Natech Quantitative Risk Analysis
Adriana Mesa-Gómez, Joaquim Casal, Mauricio Sánchez-Silva, Felipe Muñoz
September 22, 2021 (v1)
Subject: Other
Keywords: area-wide, Natech, natural event, process safety, risk
The occurrence of Natech (natural hazard triggering technological disasters) accidents has generated a reflection about the need to manage adequately the risk to people, to the environment, and to the infrastructures subjected to natural events. For this reason, academia and industry have increased research in the process safety area in the last decade, strengthening quantitative risk analysis (QRA) methodologies for Natech events. However, these methodologies have some gaps that must be closed for a better decision-making process. In this communication a comparative analysis of the existing Natech QRA approaches is done, to highlight features and differences and to identify main gaps that should be addressed in future research. It can be mentioned that all the analyzed methodologies, which have been applied to floods, earthquakes, and lightning, are based on an initial one developed in 2007. The critical gap is that in all these methodologies, the final step is the risk calculation ba... [more]
Ideal Feedstock and Fermentation Process Improvements for the Production of Lignocellulolytic Enzymes
Attia Iram, Deniz Cekmecelioglu, Ali Demirci
September 22, 2021 (v1)
Subject: Biosystems
Keywords: cellulase, enzyme production, hemicellulase, lignin modifying enzymes, lignocellulolytic enzymes, lignocellulosic biomass, pretreatment
The usage of lignocellulosic biomass in energy production for biofuels and other value-added products can extensively decrease the carbon footprint of current and future energy sectors. However, the infrastructure in the processing of lignocellulosic biomass is not well-established as compared to the fossil fuel industry. One of the bottlenecks is the production of the lignocellulolytic enzymes. These enzymes are produced by different fungal and bacterial species for degradation of the lignocellulosic biomass into its reactive fibers, which can then be converted to biofuel. The selection of an ideal feedstock for the lignocellulolytic enzyme production is one of the most studied aspects of lignocellulolytic enzyme production. Similarly, the fermentation enhancement strategies for different fermentation variables and modes are also the focuses of researchers. The implementation of fermentation enhancement strategies such as optimization of culture parameters (pH, temperature, agitation,... [more]
Showing records 51 to 75 of 798. [First] Page: 1 2 3 4 5 6 7 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025
Filter by month: January | February | March | April | May | June | July | August | September | October | November | December