Browse
Records Added in 2021
Records added in 2021
Filter by month: January | February | March | April | May | June | July | August | September | October | November | December
126. LAPSE:2021.0680
Antifungal Effect of Volatile Organic Compounds from Bacillus velezensis CT32 against Verticillium dahliae and Fusarium oxysporum
July 29, 2021 (v1)
Subject: Biosystems
Keywords: Bacillus velezensis, biocontrol, vascular wilt pathogens, volatile organic compounds
The present study focuses on the inhibitory effect of volatile metabolites released by Bacillus velezensis CT32 on Verticillium dahliae and Fusarium oxysporum, the causal agents of strawberry vascular wilt. The CT32 strain was isolated from maize straw compost tea and identified as B. velezensis based on 16S rRNA gene sequence analysis. Bioassays conducted in sealed plates revealed that the volatile organic compounds (VOCs) produced by the strain CT32 possessed broad-spectrum antifungal activity against eight phytopathogenic fungi. The volatile profile of strain CT32 was obtained by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). A total of 30 volatile compounds were identified, six of which have not previously been detected in bacteria or fungi: (Z)-5-undecene, decyl formate, 2,4-dimethyl-6-tert-butylphenol, dodecanenitrile, 2-methylpentadecane and 2,2’,5,5’-tetramethyl-1,1’-biphenyl. Pure compounds were tested in vitro for th... [more]
127. LAPSE:2021.0679
Methanol Synthesis with Steel-Mill Gases: Simulation and Practical Testing of Selected Gas Utilization Scenarios
July 29, 2021 (v1)
Subject: Reaction Engineering
Keywords: Carbon2Chem®, gas recirculation, MegaMax®800, methanol synthesis, process simulation, steel-mill gases
The utilization of CO2-containing steel-mill gases for synthesis of methanol was investigated. Four different scenarios with syngas derived from steel-mill gases were considered. A process model for an industrial methanol production including gas recirculation was applied to provide realistic conditions for catalyst performance tests. A long-term test series was performed in a close-to-practice setup to demonstrate the stability of the catalyst. In addition, the experimental results were used to discuss the quality of the simulation results. Kinetic parameters of the reactor model were fitted. A comparison of two different kinetic approaches and the experimental results revealed which approach better fits CO-rich or CO2-rich steel-mill gases.
128. LAPSE:2021.0678
Permeate Flux Control in SMBR System by Using Neural Network Internal Model Control
July 29, 2021 (v1)
Subject: Process Control
Keywords: artificial neural network, fouling, internal model control, membrane bioreactor
This paper presents a design of a data-driven-based neural network internal model control for a submerged membrane bioreactor (SMBR) with hollow fiber for microfiltration. The experiment design is performed for measurement of physical parameters from an actuator input (permeate pump voltage), which gives the information (outputs) of permeate flux and trans-membrane pressure (TMP). The palm oil mill effluent is used as an influent preparation to depict fouling phenomenon in the membrane filtration process. From the experiment, membrane fouling potential is observed from flux decline pattern, with a rapid increment of TMP (above 200 mbar). Membrane fouling is a complex process and the available models in literature are not designed for control system (filtration performance). Therefore, this work proposes an aeration fouling control strategy to measure the filtration performance. The artificial neural networks (Feed-Forward Neural Network—FFNN, Radial Basis Function Neural Network—RBFNN... [more]
129. LAPSE:2021.0677
Evaluation of Oxidative Stress Parameters in Healthy Saddle Horses in Relation to Housing Conditions, Presence of Stereotypies, Age, Sex and Breed
July 29, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: behavior, free radicals, horse, redox status, stereotypy
Oxidative stress plays an important role in the development of many horse diseases and it has been shown that housing has important implications for the psychophysical well-being of horses. The aim of this study is to determine if there are any differences between the redox status in horses in relation to housing conditions. The four housing conditions analyzed were: single box, without external access and without contact (Cat A), single box with external access and possibility of partial contact (Cat B), group housing with box and large paddock (Cat C), pasture with more than 7 horses and the possibility of green forage for the whole year (Cat D). A group of 117 healthy horses were selected in several private stables in Northern Italy. All subjects treated with any type of drug were excluded. At the end of the enrollment, the 117 selected horses were divided into the four housing categories. Stereotypies were highest in the group of horses in single box, without external access and wi... [more]
130. LAPSE:2021.0676
New Design of the Reversible Jet Fan
July 29, 2021 (v1)
Subject: Process Design
Keywords: axial fan, design, energy characteristics, jet, reversible, thrust
This paper presents two designs of the axial reversible jet fan, with the special focus on the impeller. The intention was to develop a reversible axial jet fan which operates in the same way in both rotating directions while generating thrust as high as possible. The jet fan model with the outer diameter 499.2 ± 0.1 mm and ten adjustable blades is the same, while it is in-built in two different casings. The first construction is a cylindrical casing, while the second one is profiled as a nozzle. Thrust, volume flow rate, consumed power and ambient conditions were measured after the international standard ISO 13350. Results for both constructions are presented for three impeller blade angles: 28°, 31° and 35°, and rotation speed in the interval n = 400 to 2600 rpm. The smallest differences in thrust, depending on the fan rotation direction, as well as the highest thrust are achieved for the first design with the cylindrical casing and blade angle at the outer diameter of 35°. Therefore... [more]
131. LAPSE:2021.0675
The Supervision of Dough Fermentation Using Image Analysis Complemented by a Continuous Discrete Extended Kalman Filter
July 29, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: dough fermentation, estimation, extended Kalman filter, model
Dough fermentation is an important step during the preparation of fermented baking goods. For the supervision of dough fermentation, a continuous-discrete extended Kalman filter was applied, which uses an image analysis system as the measurement. By estimation a fixed number of gas bubbles inside the dough, the radius of an average bubble was determined. A mathematical dough model was used by the extended Kalman filter to estimate the radius of the average bubble, the CO2 concentration of the non-gas dough phase and the number of CO2 molecules in the average bubble. During a fermentation of 50 min, the extended Kalman filter estimated that the average radius increased from 50 µm to 127 µm, the CO2 concentration in the non-gas dough increased to 23 mol/m³, and the CO2 amount in the bubble increased from 0.1 × 10−10 to 4 × 10−10 mol. Also, the specific CO2 production rate was estimated to be in the range from 1.5 × 10−3 to more than 4 × 10−3 mol·m³/kg/s. The advantages of an extended Kal... [more]
132. LAPSE:2021.0674
Inventory of MSWI Fly Ash in Switzerland: Heavy Metal Recovery Potential and Their Properties for Acid Leaching
July 29, 2021 (v1)
Subject: Energy Policy
Keywords: acid leaching, heavy metal recovery, MSWI fly ash, properties of fly ash
From the year 2021 on, heavy metals from Swiss municipal solid waste incineration (MSWI) fly ash (FA) must be recovered before landfilling. This is predominantly performed by acid leaching. As a basis for the development of defined recovery rates and for the implementation of the recovery process, the authorities and plant operators need information on the geochemical properties of FA. This study provides extended chemical and mineralogical characterization of all FA produced in 29 MSWI plants in Switzerland. Acid neutralizing capacity (ANC) and metallic aluminum (Al0) were additionally analyzed to estimate the effort for acid leaching. Results show that all FA samples are composed of similar constituents, but their content varies due to differences in waste input and incineration conditions. Based on their geochemical properties, the ashes could be divided into four types describing the leachability: very good (6 FA), good (10 FA), moderate (5 FA), and poor leaching potential (8 FA).... [more]
133. LAPSE:2021.0673
The Dynamics of Globally Unstable Air-Helium Jets and Its Impact on Jet Mixing Intensity
July 29, 2021 (v1)
Subject: Other
Keywords: Mixing, mixing length scales, turbulence
The paper presents experimental investigations of the low-density air-helium jets. The paper is aimed at the analysis of the flow conditions promoting the local absolute instability leading to global flow oscillations. A number of the test cases are analysed with a wide range of the shear layer thickness showing conditions favorable for the global modes and also mixing intensity triggered by such a regime. It is shown that high mixing intensity is determined not only by the global regime but also by the vortex pairing process. The results are compared with a recently proposed universal scaling law for an onset into the global mode. The results turn out to be far from this scaling law and the reasons for such discrepancies are discussed. The measurements show also that if the shear layer at the nozzle exit is thin enough the global modes are suppressed. The mechanism leading to the global mode suppression under such conditions is carefully analysed.
134. LAPSE:2021.0672
Electrochemical Mineralization of Ibuprofen on BDD Electrodes in an Electrochemical Flow Reactor: Numerical Optimization Approach
July 29, 2021 (v1)
Subject: Process Design
Keywords: BDD electrodes, electrochemical flow reactor, mineralization of ibuprofen, numerical optimization approach, response surface methodology
Statistical analysis was applied to optimize the electrochemical mineralization of ibuprofen with two boron-doped diamond (BDD) electrodes in a continuous electrochemical flow reactor under recirculation batch mode. A central composite rotatable (CCR) experimental design was used to analyze the effect of initial pH (2.95−13.04), current intensity (2.66−4.34 A), and volumetric flow rate (0.16−1.84 L/min) and further optimized by response surface methodology (RSM) to obtain the maximum mineralization efficiency and the minimum specific energy consumption. A 91.6% mineralization efficiency (EM) of ibuprofen with a specific energy consumption (EC) of 4.36 KW h/g TOC within 7 h of treatment was achieved using the optimized operating parameters (pH0 = 12.29, I = 3.26 A, and Q of 1 L/min). Experimental results of RSM were fitted via a third-degree polynomial regression equation having the performance index determination coefficients (R2) of 0.8658 and 0.8468 for the EM and EC, respectively. T... [more]
135. LAPSE:2021.0671
Evaluation of Direct Ultrasound-Assisted Extraction of Phenolic Compounds from Potato Peels
July 29, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: antioxidant, phenolic compound, potato peel, ultrasound
Potato peels (PPs) are generally considered as agriculture waste. The United States alone generates over one million tons of PPs a year. However, PPs contain valuable phenolic compounds with antioxidant activities. In this study, we evaluated the efficiency of ultrasound-assisted extraction techniques in recovering antioxidants from PPs. These techniques included a direct ultrasound-assisted extraction (DUAE), an indirect ultrasound-assisted extraction (IUAE), and a conventional shaking extraction (CSE). Results of this study showed that DUAE was more effective in extracting phenolic compounds than IUAE and CSE. We also evaluated the factors affecting the yield of total phenolic compounds (TPC) in DUAE, including the temperature, time, acoustic power, ratio of solvent to solids, and size of PPs particles. TPC yield of DUAE was higher, and the extraction rate was faster than IUAE and CSE. Furthermore, TPC yield was strongly correlated to the temperature of the mixture of PPs suspension.... [more]
136. LAPSE:2021.0670
Flow Ripple Reduction of Axial-Piston Pump by Structure Optimizing of Outlet Triangular Damping Groove
July 29, 2021 (v1)
Subject: Modelling and Simulations
Keywords: axial-piston pump, flow ripple reduction, structure optimizing method, triangular damping groove
The triangular damping groove on the valve plate can effectively reduce the discharge flow ripple of an axial piston pump, which structural parameters will directly affect the pump’s dynamic characteristics. Herein, a multi-parameter data-based structure optimizing method of the triangular damping groove is investigated using numerical models and simulation results. The mathematical models of a nine-piston pump are proposed and developed by MATLAB/Simulink, and the simulation results are verified by experimental results. Then, the effects of width angle and depth angle on discharge flow are analyzed. Based on the analysis of groove parameters, an optimizing index, which considering the time domain characteristics of discharge flow, is proposed. As results show, comparing with the initial specific groove structure, the amplitude of flow ripple is reduced from 14.6% to 9.8% with the optimized structure. The results demonstrate that the outlet flow ripple can be significantly reduced by t... [more]
137. LAPSE:2021.0669
Influence of the Gas Bubble Size Distribution on the Ladle Stirring Process
July 29, 2021 (v1)
Subject: Modelling and Simulations
Keywords: bubble diameter, ladle bottom stirring, ladle refining, numerical simulation, secondary metallurgy
This work aims at figuring out the influence of gas bubble size distribution on the ladle stirring process. The work is conducted through three-dimensional (3D) numerical simulation based on the finite volume method. Mesh sensitivity test and the cross-validation are performed to ensure the results are mesh independent and the numerical set-up is correct. Two distributions, uniform and Log-normal function, are investigated under different gas flow rates and number of porous plugs. The results indicate that the results, e.g., the axial velocity and the area of the slag eye, have little difference for low flow rate. The difference becomes dominant whilst the flow rate is increasing, such as 600 NL/min. The Log-normal function bubble size distribution gives a larger axial velocity and a smaller slag eye area compared to the uniform bubble size distribution. This work indicated that, at a higher flow rate, the Log-normal function is a better choice to predict the melt behavior and the slag... [more]
138. LAPSE:2021.0668
Recent Trends in Pretreatment of Food before Freeze-Drying
July 29, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: blanching, drying rate, freeze-drying, high hydrostatic pressure, osmotic dehydration, pulsed electric field, quality, size reduction, ultrasound
Drying is among the most important processes and the most energy-consuming techniques in the food industry. Dried food has many applications and extended shelf life. Unlike the majority of conventional drying methods, lyophilization, also known as freeze-drying (FD), involves freezing the food, usually under low pressure, and removing water by ice sublimation. Freeze-dried materials are especially recommended for the production of spices, coffee, dried snacks from fruits and vegetables and food for military or space shuttles, as well as for the preparation of food powders and microencapsulation of food ingredients. Although the FD process allows obtaining dried products of the highest quality, it is very energy- and time consuming. Thus, different methods of pretreatment are used for not only accelerating the drying process but also retaining the physical properties and bioactive compounds in the lyophilized food. This article reviews the influence of various pretreatment methods such... [more]
139. LAPSE:2021.0667
Municipal Solid Waste as Secondary Resource: Selectively Separating Cu(II) from Highly Saline Fly Ash Extracts by Polymer-Assisted Ultrafiltration
July 29, 2021 (v1)
Subject: Process Design
Keywords: municipal solid waste, pilot installation, polymer-assisted ultrafiltration, real fly ash extracts, selective Cu(II) separation, sustainable waste treatment, urban mining
Urban mining from fly ash resulting from municipal solid waste incineration (MSWI) is becoming more and more important due to the increasing scarcity of supply-critical metals. Metal extraction from acid fly ash leaching has already been established. In this context selective Cu recovery is still a challenge. Therefore, our purpose was the separation of Cu(II) from MSWI fly ash extracts by polymer-assisted ultrafiltration (PAUF). We investigated three polyethyleneimines (PEIs) with regard to metal retention, Cu(II) selectivity, Cu(II) loading capacity, and the viscosity of the PEI containing solutions. A demanding challenge was the highly complex matrix of the fly ash extracts, which contain up to 16 interfering metal ions in high concentrations and a chloride content of 60 g L−1. Overcoming that, Cu(II) was selectively enriched and separated from real fly ash extract at pH 3.0. At pH 1.0, a PEI-free Cu(II) concentrate was obtained and PEIs could be regenerated for reuse in further sep... [more]
140. LAPSE:2021.0666
Switching Monopolar Mode for RF-Assisted Resection and Superficial Ablation of Biological Tissue: Computational Modeling and Ex Vivo Experiments
July 29, 2021 (v1)
Subject: Biosystems
Keywords: bipolar RF mode, computational RF model, RF superficial ablation, RF-assisted surgical resection, switching monopolar RF mode
Radiofrequency (RF)-based monopolar (MM) and bipolar mode (BM) applicators are used to thermally create coagulation zones (CZs) in biological tissues with the aim of destroying surface tumors and minimizing blood losses in surgical resection. Both modes have disadvantages as regards safely and in obtaining a sufficiently deep coagulation zone (CZ). In this study, we compared both modes versus a switching monopolar mode (SMM) in which the role of the active electrode changes intermittently between the two electrodes of the applicator. In terms of clinical impact, the three modes can easily be selected by the surgeon according to the surgical maneuver. We used computational and experimental models to study the feasibility of working in MM, BM, and SMM and to compare their CZ characteristics. We focused exclusively on BM and SMM, since MM only creates small coagulation zones in the area between the electrodes. The results showed that SMM produces the deepest CZ between both electrodes (33... [more]
141. LAPSE:2021.0665
How Do Indirect Effects of Contaminants Inform Ecotoxicology? A Review
July 29, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: chemical contaminants, community and ecosystem ecology, indirect effects
Indirect effects in ecotoxicology are defined as chemical- or pollutant-induced alterations in the density or behavior of sensitive species that have cascading effects on tolerant species in natural systems. As a result, species interaction networks (e.g., interactions associated with predation or competition) may be altered in such a way as to bring about large changes in populations and/or communities that may further cascade to disrupt ecosystem function and services. Field studies and experimental outcomes as well as models indicate that indirect effects are most likely to occur in communities in which the strength of interactions and the sensitivity to contaminants differ markedly among species, and that indirect effects will vary over space and time as species composition, trophic structure, and environmental factors vary. However, knowledge of indirect effects is essential to improve understanding of the potential for chemical harm in natural systems. For example, indirect effec... [more]
142. LAPSE:2021.0664
Study on the Effects of Physical Properties of Tenera Palm Kernel during Drying and Its Moisture Sorption Isotherms
July 29, 2021 (v1)
Subject: Food & Agricultural Processes
Keywords: equilibrium moisture content, moisture sorption isotherms, palm kernel, physical properties
A study on the effect of the physical properties and moisture sorption isotherm of palm kernels constitutes the critical criteria in evaluating the drying performance. The drying was evaluated as a function of moisture content (MC) in the range of 0.31−0.02 kg/kg (d.b.). Whereas, the equilibrium moisture content (EMC) of palm kernels (whole kernel and ground kernel) was determined experimentally using the standard gravimetric method at different temperatures (50 °C to 80 °C), over a range of relative humidity (RH) from 10% to 81%. Palm kernel length, width, and thickness decrease from 16.08 ± 2.09 mm to 14.17 ± 2.30 mm, 12.06 ± 1.40 mm to 11.24 ± 1.08 mm, and 10.01 ± 1.27 mm to 9.18 ± 1.04 mm, respectively, when MC decreased. Bulk density, surface area, and specific surface area decreased as the MC decreased, while porosity and true density were increased. EMC of palm kernels (whole kernel and ground kernel) decreased with an increase in temperature at constant RH. Modified Oswin and m... [more]
143. LAPSE:2021.0663
Adsorption as a Process for Produced Water Treatment: A Review
July 29, 2021 (v1)
Subject: Interdisciplinary
Keywords: Adsorption, oil water, produced water, separation, water treatment
Produced water (PW) is a by-product of oil and gas operations, and its production is foreseen to increase in the upcoming years. Such an increase is justified by various entities through their projection of the expected increase in the demand of oil and gas. The treatment of produced water is a significantly growing challenge for the oil and gas industry that requires serious attention. The first part of this review will present the underlying issue of produced water and relevant practices. With adsorption being defined as the least expensive treatment method, the second part will introduce general adsorption principals. The third part will describe the recent applications of adsorption for the treatment of PW with more focus of categorizing the adsorbents as natural and non-natural adsorbents. The main aim of this review is to shed light on the recent research related to PW treatment using adsorption. This is performed to highlight the shortcomings in PW adsorption research and recomm... [more]
144. LAPSE:2021.0662
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part I: A Systematic Analysis of the Literature Published between 2000 and 2020
July 29, 2021 (v1)
Subject: Biosystems
Keywords: 3D cell culture, cellular microenvironment, HTS, in vitro models, material, micro-bioreactor, microfluidics, scaffolds, tissue engineering
Bioreactors have proven useful for a vast amount of applications. Besides classical large-scale bioreactors and fermenters for prokaryotic and eukaryotic organisms, micro-bioreactors, as specialized bioreactor systems, have become an invaluable tool for mammalian 3D cell cultures. In this systematic review we analyze the literature in the field of eukaryotic 3D cell culture in micro-bioreactors within the last 20 years. For this, we define complexity levels with regard to the cellular 3D microenvironment concerning cell−matrix-contact, cell−cell-contact and the number of different cell types present at the same time. Moreover, we examine the data with regard to the micro-bioreactor design including mode of cell stimulation/nutrient supply and materials used for the micro-bioreactors, the corresponding 3D cell culture techniques and the related cellular microenvironment, the cell types and in vitro models used. As a data source we used the National Library of Medicine and analyzed the s... [more]
145. LAPSE:2021.0661
Review on Carbon Nanotube Varieties for Healthcare Application: Effect of Preparation Methods and Mechanism Insight
July 29, 2021 (v1)
Subject: Materials
Keywords: carbon electrodes, carbon nanotube, catalyst, E. coli, graphene oxide, single wall carbon
Many potential uses of carbon nanotubes (CNT) in various sectors have created an urge to assess their diverse range of properties pertaining to various applications like catalysis, biosensor, and antimicrobial activity. Increasing studies on the biosensor and antibacterial activity of CNT have prompted tremendous interest in the utilization of the carbon-based nanostructured material as an alternative to currently existing antibiotics. However, the study of bactericidal aspects of this nanomaterial is relatively new and hence the deeper understanding of the various physicochemical characteristics and antimicrobial nature of CNT is extremely wanted. This review covers the effect of framework substitution and explains the understanding of membrane disintegration and oxidative stresses upon nanomaterials for antimicrobial activity. The present article has also reviewed effect of preparation nanoparticle deposition and framework modification on carbon nanotube structure. The recent researc... [more]
146. LAPSE:2021.0660
Simulation of Prosopis juliflora Air Gasification in Multistage Fluidized Process
July 29, 2021 (v1)
Subject: Modelling and Simulations
Keywords: Aspen Plus, fluidized-bed, multistage gasifier
A multistage atmospheric fluidized bed gasifier was developed using the Aspen Plus simulation process. The innovative gasification reactor aims to yield a high-quality product gas as it conducts pyrolysis, combustion, and reduction in different zones. In addition, it uses gas as a heat carrier and has a fluidized char bed in the reduction zone to enhance the in-situ tar reduction. In order to study the feasibility of the gasifier, an evaluation of the product gas and the process efficiency is required. The proposed model was based on the reaction rates and hydrodynamic parameters of the bubbling bed. Four different stages were initially considered in the simulation process: decomposition of the feed, partial volatile combustion, char reduction, and gas solid separation. The gasification reactor was operated over a temperature range of 800−1000 °C and an isothermal combustion reactor was operated at 1000 °C. In addition, the air to biomass mass ratio was varied from 0.2 to 0.5. It has b... [more]
147. LAPSE:2021.0659
Study of Deactivation in Suzuki Reaction of Polymer-Stabilized Pd Nanocatalysts
July 29, 2021 (v1)
Subject: Reaction Engineering
Keywords: catalyst stability, hyper-cross-linked polystyrene, palladium nanoparticles, Suzuki cross-coupling
This work is addressed to the phenomenon of catalyst deactivation taking place during the repeated uses in the reaction of Suzuki-Miyaura (S-M) cross-coupling, which is widely applied in industry for C-C bond formation. Ligandless catalysts based on Pd(0) NPs supported on hyper-cross-linked polystyrene (HPS) of two types (non-functionalized and bearing tertiary amino groups) were studied in a model S-M reaction between 4-bromoanisole and phenylboronic acid. Synthesized catalysts were shown to be highly active under mild reaction conditions. HPS allows stabilization of Pd(0) NPs and prevents their agglomeration and detectable Pd leaching. However, the loss of catalytic activity was observed during recycling. The deactivation issue was assigned to the hydrophobic nature of non-functionalized HPS, which allowed a strong adsorption of cross-coupling product during the catalyst separation procedure. A thorough washing of Pd/HPS catalyst by hydrophobic solvent was found to improve to the big... [more]
148. LAPSE:2021.0658
Abrasive Water Jet Cutting of Hardox Steels—Quality Investigation
July 29, 2021 (v1)
Subject: Other
Keywords: abrasive water jet, cutting, quality prediction, surface quality
The paper aims to study the surface quality dependency on selected parameters of cuts made in Hardox™ by abrasive water jet (AWJ). The regression process was applied on measured data and the equations were prepared for both the Ra and Rz roughness parameters. One set of regression equations was prepared for the relationship of Ra and Rz on cutting parameters—pumping pressure, traverse speed, and abrasive mass flow rate. The second set of regression equations describes relationships between the declination angle in kerf as the independent variable and either the Ra or the Rz parameters as dependent variables. The models can be used to predict cutting variables to predict the surface quality parameters.
149. LAPSE:2021.0657
Current State of Porous Carbon for Wastewater Treatment
July 29, 2021 (v1)
Subject: Materials
Keywords: activated carbon, activating agent, Adsorption, applications, Biomass, pollutants, porous materials
Porous materials constitute an attractive research field due to their high specific surfaces; high chemical stabilities; abundant pores; special electrical, optical, thermal, and mechanical properties; and their often higher reactivities. These materials are currently generating a great deal of enthusiasm, and they have been used in large and diverse applications, such as those relating to sensors and biosensors, catalysis and biocatalysis, separation and purification techniques, acoustic and electrical insulation, transport gas or charged species, drug delivery, and electrochemistry. Porous carbons are an important class of porous materials that have grown rapidly in recent years. They have the advantages of a tunable pore structure, good physical and chemical stability, a variable specific surface, and the possibility of easy functionalization. This gives them new properties and allows them to improve their performance for a given application. This review paper intends to understand... [more]
150. LAPSE:2021.0656
Thermal Hazard Analysis of Styrene Polymerization in Microreactor of Varying Diameter
July 29, 2021 (v1)
Subject: Process Monitoring
Keywords: Computational Fluid Dynamics, microreactor, styrene polymerization, thermal runaway
Polymerization is a typical exothermic reaction in the fine chemical industry, which is easy to cause thermal runaway. In order to lower the thermal runaway risk of polymerization, a microreactor was adopted in this study to carry out styrene thermal polymerization. The hydrodynamic model and the fluid−solid coupling model of thermal polymerization of styrene were combined by using the computation fluid dynamics (CFD) method to build a three-dimensional steady-state model of the batch and the microreactor and compare. The results indicated that the maximum temperature of the polymerization in the microreactor was only 150.23 °C, while in the batch reactor, it was up to 371.1 °C. Therefore, the reaction temperature in the microreactor could be controlled more effectively compared with that in the batch reactor. During the reaction process, jacket cooling may fail, which would lead to an adiabatic situation. According to the divergence criterion (DIV), the thermal runaway of the polymeri... [more]