Browse
Subjects
Records with Subject: Reaction Engineering
Showing records 76 to 100 of 281. [First] Page: 1 2 3 4 5 6 7 8 Last
Phosphorus-Doped Carbon Supported Vanadium Phosphate Oxides for Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran
Sha Wen, Kai Liu, Yi Tian, Yanping Xiang, Xianxiang Liu, Dulin Yin
April 29, 2021 (v1)
Keywords: 2,5-diformylfuran, 5-hydroxymethylfurfural, Catalysis, selective oxidation, vanadium phosphate oxides
2,5-diformylfuran (DFF) is an important downstream product obtained by selective oxidation of the biomass-based platform compound 5-hydroxymethylfurfural (HMF). In this study, a phosphorus-doped carbon (P-C) supported vanadium phosphate oxide (VPO) catalyst was successfully prepared and showed remarkably high catalytic activity in the selective oxidation of HMF to produce DFF with air as an oxidant. The effects of the reaction temperature, reaction time, solvent, catalyst amount, and VPO loading amount were investigated. The results showed that an HMF conversion rate of 100% and a DFF yield of 97.0% were obtained under suitable conditions, and DMSO was found to be the most suitable solvent under an air atmosphere.
Enhanced Degradation of Phenolic Compounds in Coal Gasification Wastewater by Methods of Microelectrolysis Fe-C and Anaerobic-Anoxic—Oxic Moving Bed Biofilm Reactor (A2O-MBBR)
Do Tra Huong, Van Tu Nguyen, Xuan Linh Ha, Hien Lan Nguyen Thi, Thi Thoa Duong, Duy Chinh Nguyen, Hong-Tham Nguyen Thi
April 27, 2021 (v1)
Keywords: A2O-MBBR, coal gasification wastewater, Fe-C materials, internal electrolysis
The coal gasification wastewater figures prominently among types of industrial effluents due to its complex and phenolic composition, posing great difficulty for conventional water treatment processes. Since the coking wastewater is toxic and mutagenic to humans and animals, treatment of coal gasification wastewater is genuinely necessary. In this study, we established a lab-scale A2O (Anaerobic-Anoxic—Oxic) with moving bed biological reactor (MBBR) system and evaluated some water indicators of wastewater pretreated with internal electrolysis, of wastewater output of the established A2O-MBBR system, and of the wastewater treated by the combination thereof. The wastewater was taken from a coking plant at Thai Nguyen Iron and Steel Joint Stock Company in Vietnam. COD, BOD5, NH4+-N, phenol, and pH of the input coal gasification wastewater were 2359, 1105, 319, 172 mg/L, and 8 ± 0.1, respectively. The conditions of internal electrolysis were as follows: 720 min of reaction time, pH = 4, 25... [more]
Behavior of Cd during Coal Combustion: An Overview
Lucie Bartoňová, Helena Raclavská, Bohumír Čech, Marek Kucbel
April 27, 2021 (v1)
Keywords: cadmium, chlorine, coal combustion, emissions, retention, volatility, wastes
Due to the unfavorable combination of its toxicity and high volatility, Cd is contained in most lists of potentially hazardous air pollutants with the greatest environmental and human-health concerns. The review paper evaluates the behavior of Cd during combustion (incineration) processes and its redistribution among condensed fractions (bottom ash/slag, fly ash) and volatilized fractions (that passes through most particulate control devices). The paper addresses all important effects of Cd interactions, such as presence of organic or inorganic chlorides, moisture levels, S, P and Na concentrations, flue gas composition etc. Possibilities of using various adsorbents (either within in-furnace regime or applied in post-combustion zone) are evaluated as well. Special attention is paid to mitigating its emissions factors; decreasing Cd volatility and facilitating Cd retention are discussed with the view of various combustion (incineration) conditions and the feed fuel composition.
The Effects of Port Water Injection on Spark Ignition Engine Performance and Emissions Fueled by Pure Gasoline, E5 and E10
Farhad Salek, Meisam Babaie, Maria Dolores Redel-Macias, Ali Ghodsi, Seyed Vahid Hosseini, Amir Nourian, Martin L Burby, Ali Zare
April 26, 2021 (v1)
Keywords: E10 biofuel, Ethanol, NOx, start of combustion, water port injection
It has been proven that vehicle emissions such as oxides of nitrogen (NOx) are negatively affecting the health of human beings as well as the environment. In addition, it was recently highlighted that air pollution may result in people being more vulnerable to the deadly COVID-19 virus. The use of biofuels such as E5 and E10 as alternatives of gasoline fuel have been recommended by different researchers. In this paper, the impacts of port injection of water to a spark ignition engine fueled by gasoline, E5 and E10 on its performance and NOx production have been investigated. The experimental work was undertaken using a KIA Cerato engine and the results were used to validate an AVL BOOST model. To develop the numerical analysis, design of experiment (DOE) method was employed. The results showed that by increasing the ethanol fraction in gasoline/ethanol blend, the brake specific fuel consumption (BSFC) improved between 2.3% and 4.5%. However, the level of NOx increased between 22% to 48... [more]
Hydrothermal Carbonization of Olive Tree Pruning as a Sustainable Way for Improving Biomass Energy Potential: Effect of Reaction Parameters on Fuel Properties
Judith González-Arias, Marta Elena Sánchez, Elia Judith Martínez, Camila Covalski, Ana Alonso-Simón, Rubén González, Jorge Cara-Jiménez
April 16, 2021 (v1)
Keywords: bioconversion, bioenergy, biofuel, combustion, hydrochar, hydrothermal carbonization, olive tree pruning biomass
Hydrothermal carbonization (HTC) allows the conversion of organic waste into a solid product called hydrochar with improved fuel properties. Olive tree pruning biomass (OTP), a very abundant residue in Mediterranean countries, was treated by HTC to obtain a solid fuel similar to coal that could be used in co-combustion processes. Three different reaction temperatures (220, 250, and 280 °C) and reaction times (3, 6, and 9 h) were selected. The hydrochars obtained were extensively analyzed to study their behavior as fuel (i.e., ultimate, proximate, fiber and thermogravimetric analysis, Fourier-transform infrared spectroscopy (FTIR), activation energy, and combustion performance). The concentrations of cellulose, hemicellulose, and lignin in the samples depict a clear and consistent trend with the chemical reactions carried out in this treatment. Regarding O/C and H/C ratios and HHV, the hydrochars generated at more severe conditions are similar to lignite coal, reaching values of HHV up... [more]
Enhanced Adsorptive Removal of β-Estradiol from Aqueous and Wastewater Samples by Magnetic Nano-Akaganeite: Adsorption Isotherms, Kinetics, and Mechanism
Anele Mpupa, Azile Nqombolo, Boris Mizaikoff, Philiswa Nosizo Nomngongo
April 16, 2021 (v1)
Keywords: adsorptive removal, akaganeite nanorods, desirability function, endocrine disruptors, β-estradiol
A surfactant-free method was used to synthesize iron oxyhydroxide (akaganeite, β-FeOOH) nanorods and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS), and transmission electron microscopy (TEM). The synthesized nanoadsorbent was applied for the adsorptive removal of β-estradiol from aqueous solutions. The parameters affecting the adsorption were optimized using a multivariate approach based on the Box−Behnken design with the desirability function. Under the optimum conditions, the equilibrium data were investigated using two and three parameter isotherms, such as the Langmuir, Freundlich, Dubinin−Radushkevich, Redlich−Peterson, and Sips models. The adsorption data were described as Langmuir and Sips isotherm models and the maximum adsorption capacities in Langmuir and Sips of the β-FeOOH nanorods were 97.0 and 103 mg g−1, respectively. The adjusted non-l... [more]
Cu(II) and As(V) Adsorption Kinetic Characteristic of the Multifunctional Amino Groups in Chitosan
Byungryul An
April 16, 2021 (v1)
Keywords: Adsorption, amino group, anion, cation, kinetic, multifunction
Amino groups in the chitosan polymer play as a functional group for the removal of cations and anions depending on the degree of protonation, which is determined by the solution pH. A hydrogel beadlike porous adsorbent was used to investigate the functions and adsorption mechanism of the amino groups by removal of Cu(II) as a cation and As(V) as an anion for a single and mixed solution. The uptakes of Cu(II) and As(V) were 5.2 and 5.6 μmol/g for the single solution and 5.9 and 3.6 μmol/g for the mixed solution, respectively. The increased total capacity in the presence of both the cation and anion indicated that the amino group (NH2 or NH3+) species was directly associated for adsorption. The application of a pseudo second-order (PSO) kinetic model was more suitable and resulted in an accurate correlation coefficient (R2) compared with the pseudo first-order (PFO) kinetic model for all experimental conditions. Due to poor linearization of the PFO reaction model, we attempted to divide... [more]
Degradation of Direct Blue 1 through Heterogeneous Photocatalysis with TiO2 Irradiated with E-Beam
Elvia Gallegos, Florinella Muñoz Bisesti, Katherine Vaca-Escobar, Cristian Santacruz, Lenys Fernández, Alexis Debut, Patricio J. Espinoza-Montero
April 16, 2021 (v1)
Keywords: Adsorption, Direct Blue 1, electron-beam, heterogeneous photocatalysis, irradiated TiO2
Most dyes used in the textile industry are chemically stable and poorly biodegradable, therefore, they are persistent in the environment and difficult to degrade by conventional methods. An alternative treatment for this kind of substance is heterogeneous photocatalysis using TiO2, so, in this work, it is proposed to degrade Direct Blue 1 (DB1) using microparticulate TiO2 irradiated with e-beam at three different doses: 5, 10 and 20 kGy (J/kg). The DB1 degradation was implemented in a batch reactor (DB1 initial concentration = 50 mg L−1, pH 2.5, TiO2 concentration = 200 mg L−1). We have demonstrated that the photocatalytic power of TiO2, when irradiated with e-beam (5, 10, 20 kGy), varies slightly, with minor effects on photodegradation performance. However, the dose of 10 kGy showed a slightly better result, according to the DB1 photodegradation rate constant. Adsorption process was not affected by irradiation; its isotherm was fitted to Freundlich’s mathematical model. The DB1 photod... [more]
Supported Palladium Nanocatalysts: Recent Findings in Hydrogenation Reactions
Marta A. Andrade, Luísa M. D. R. S. Martins
April 16, 2021 (v1)
Keywords: carbon material, catalyst, hydrogenation, mesoporous silica, MOF, nanoparticles, palladium, supported, zeolite
Catalysis has witnessed a dramatic increase on the use of metallic nanoparticles in the last decade, opening endless opportunities in a wide range of research areas. As one of the most investigated catalysts in organic synthesis, palladium finds numerous applications being of significant relevance in industrial hydrogenation reactions. The immobilization of Pd nanoparticles in porous solid supports offers great advantages in heterogeneous catalysis, allowing control of the major factors that influence activity and selectivity. The present review deals with recent developments in the preparation and applications of immobilized Pd nanoparticles on solid supports as catalysts for hydrogenation reactions, aiming to give an insight on the key factors that contribute to enhanced activity and selectivity. The application of mesoporous silicas, carbonaceous materials, zeolites, and metal organic frameworks (MOFs) as supports for palladium nanoparticles is addressed.
Novel Application of Pretreatment and Diagnostic Method Using Dynamic Pressure Fluctuations to Resolve and Detect Issues Related to Biogenic Residue Ash in Chemical Looping Gasification
Andrea Di Giuliano, Ibai Funcia, Raúl Pérez-Vega, Javier Gil, Katia Gallucci
March 14, 2021 (v1)
Keywords: agglomeration, ash behavior, biogenic residues, chemical looping gasification, oxygen carriers, pressure fluctuation analysis, pretreatments for biomasses
Biogenic residues are a promising feedstock to produce liquid biofuels via chemical looping gasification (CLG), but they form ashes with a high inorganic matter content, thus causing agglomeration and deposition in CLG-fluidized beds made of oxygen carriers (OC). The aim of this work is to develop pretreatments for residual biomasses to prevent this issue. Raw forest pine (as a reference material) and wheat straw residues were considered. The latter were pretreated by torrefaction at 250, 260, or 270 °C and through the washing of torrefied biomasses. Torrefaction encouraged a de-chlorinating effect, while washing allowed the removal of 30−40% of S, 60−70% of K, and 40−50% of P. The analysis of pressure fluctuation signals (standard deviations and dominant frequencies) was utilized to verify the improvement of the performance of treated biomass in fluidized beds: three OCs were, respectively, coupled with ashes from all biomasses, then fluidized from 700 to 1000 °C at two and three time... [more]
Influences of Water Content in Feedstock Oil on Burning Characteristics of Fatty Acid Methyl Esters
Cherng-Yuan Lin, Lei Ma
March 14, 2021 (v1)
Keywords: added water content, burning characteristics, distillation temperature, fatty acid methyl ester, fuel structure
Strong alkaline-catalyst transesterification with short-chain alcohol is generally used for biodiesel production due to its dominant advantages of shorter reaction time and higher conversion rate over other reactions. The existence of excess water content in the feedstock oil might retard the transesterification rate and in turn deteriorate the fuel characteristics of the fatty acid methyl esters. Hence, optimum water content in the raw oil, aimed towards both lower production cost and superior fuel properties, becomes significant for biodiesel research and industrial practices. Previous studies only concerned the influences of water contents on the yield or conversion rate of fatty acid methyl esters through transesterification of triglycerides. The effects of added water in the reactant mixture on burning characteristics of fatty acid methyl esters are thus first investigated in this study. Raw palm oil was added with preset water content before being transesterified. The experimenta... [more]
Synthesis of Silicon Hybrid Phenolic Resins with High Si-Content and Nanoscale Phase Separation Structure
Wenjie Yuan, Fenghua Chen, Shan Li, Youpei Du, Zhenhua Luo, Yanan Sun, Hao Li, Tong Zhao
March 14, 2021 (v1)
Keywords: ablative property, nanoscale phase separation, oxidation resistance, silicon hybrid phenolic resin
In this paper, a set of silicon hybrid phenolic resins (SPF) with high Si-content were prepared by mixing phenolic resins with self-synthesized silicon resins. In order to obtain the nanoscale phase structure, condensation degree and the amount of Si-OH groups in silicon resins were controlled by the amount of inhibitor ethanol in the hydrolytic condensation polymerization of siloxane. Increasing the amount of ethanol resulted in more silanol groups and a lower degree of condensation for silicon resins, which then led to more formation of Si-O-Ph bonds in hybrid resin and improved compatibility between silicon resin and phenolic resin. When 400% ethanol by weight of siloxane was used in the sample SPF-4, nanoscale phase separation resulted. The residual weight of the cured SPF-4 at 1000 °C (R1000) significantly increased compared to pure phenolic resins. The result of the oxyacetylene flame ablation and the Cone Calorimeter test confirmed the improved ablative property and flammability... [more]
Lipase-Catalysed In Situ Transesterification of Waste Rapeseed Oil to Produce Diesel-Biodiesel Blends
Egle Sendzikiene, Migle Santaraite, Violeta Makareviciene
March 14, 2021 (v1)
Keywords: biodiesel, diesel fuel, in-situ transesterification, lipase
Rapeseed oil of high acidity, an agricultural industry by-product unsuitable for food, was used as an inexpensive raw material for the production of biodiesel fuel. The use of rapeseed oil that is unsuitable for food and lipase as a catalyst makes the biodiesel production process environmentally friendly. Simultaneous oil extraction and in situ transesterification using diesel as an extraction solvent was investigated to obtain a diesel-biodiesel blend. The diesel and rapeseed oil blend ratio was 9:1 (w/w). The enzymatic production of biodiesel from rapeseed oil with high acidity and methanol using eleven different lipases as biocatalysts was studied. The most effective biocatalyst, lipase—Lipozyme TL IM (Thermomyces lanuginosus), which is suitable for in situ transesterification—was selected, and the conversion of rapeseed oil into fatty acid methyl ester was evaluated. The influence of the amount of methanol and lipase, the reaction temperature and the reaction time were investigated... [more]
Short-Chain Polyglycerol Production via Microwave-Assisted Solventless Glycerol Polymerization Process Over Lioh-Modified Aluminium Pillared Clay Catalyst: Parametric Study
Muhammad Sajid, Muhammad Ayoub, Suzana Yusup, Bawadi Abdullah, Rashid Shamsuddin, Roil Bilad, Chi Cheng Chong, Aqsha Aqsha
March 1, 2021 (v1)
Keywords: alkali modified, aluminium pillared clay, glycerol polymerization, microwave, polyglycerol
In the current study, microwave-assisted glycerol polymerization for short-chain polyglycerol production was conducted unprecedentedly over low-cost catalyst, lithium-modified aluminium pillared clay (Li/AlPC) catalysts without the solvent. The influences of disparate reaction parameters such as the effects of Li loadings (10, 20, 30 wt.%), catalyst loadings (2, 3, 4 wt.%), operating temperatures (200, 220, 240 °C) and operating times (1−4 h) on the glycerol conversions, and polyglycerol yield (particularly for diglycerol and triglycerol), were elucidated. The fresh catalysts were subjected to physicochemical properties evaluation via characterization techniques, viz. N2 physisorption, XRD, SEM, NH3-TPD and CO2-TPD. In comparison, 20 wt.% Li/AlPC demonstrated the best performance under non-conventional heating, credited to its outstanding textural properties (an increase of basal spacing to 21 Ȧ, high surface area of 95.48 m2/g, total basicity of 34.48 mmol/g and average pore diameter... [more]
Scale-Up of Self-Regenerating Semi-Batch Adsorption Cycles through Concurrent Adsorption and Reduction of Cr(VI) on Sheep Wool
Mohamed Badrelzaman, Mustafa I. Khamis, Taleb H. Ibrahim, Fawwaz H. Jumean
March 1, 2021 (v1)
Keywords: Adsorption, hexavalent chromium, industrial wastewater, semi-batch adsorption cycles, wool
A previous publication by our group reported that adsorption of Cr(VI) on sheep wool reached 99% when allowed a long residence time, with concurrent reduction to Cr(III). In this study, the process was scaled up by optimizing a pilot plant based on semi-batch adsorption cycles. This yielded Cr(III), which is about 300 times less toxic than Cr(VI), and can be precipitated using lime at high pH. Since the reduction step is slower than the adsorption one, an adsorption column was designed to perform semi-batch operation cycles, whereby the extended “off cycle” allows reduction to take place. Since reduction of Cr(VI) frees active sites on wool, the plant acts in lieu of in situ regeneration, accompanied by additional adsorption of Cr(VI). The results show that 97% of the column efficiency can be recovered within 24 h of “off cycle”. Wastewater from a local electroplating industry was treated by this method with high removal of Cr(VI), reaching the limit permitted by environmental standard... [more]
Batch Syngas Fermentation by Clostridium carboxidivorans for Production of Acids and Alcohols
Fabiana Lanzillo, Giacomo Ruggiero, Francesca Raganati, Maria Elena Russo, Antonio Marzocchella
February 22, 2021 (v1)
Keywords: Butanol, Clostridium carboxidivorans, Ethanol, growth kinetics, Syngas
Syngas (CO, CO2, and H2) has attracted special attention due to the double benefit of syngas fermentation for carbon sequestration (pollution reduction), while generating energy. Syngas can be either produced by gasification of biomasses or as a by-product of industrial processes. Only few microorganisms, mainly clostridia, were identified as capable of using syngas as a substrate to produce medium chain acids, or alcohols (such as butyric acid, butanol, hexanoic acid, and hexanol). Since CO plays a critical role in the availability of reducing equivalents and carbon conversion, this work assessed the effects of constant CO partial pressure (PCO), ranging from 0.5 to 2.5 atm, on cell growth, acid production, and solvent production, using Clostridium carboxidivorans. Moreover, this work focused on the effect of the liquid to gas volume ratio (VL/VG) on fermentation performances; in particular, two VL/VG were considered (0.28 and 0.92). The main results included—(a) PCO affected the grow... [more]
Thermostable α-Glucan Phosphorylase-Catalyzed Enzymatic Copolymerization to Produce Partially 2-Deoxygenated Amyloses
Jun-ichi Kadokawa, Shota Nakamura, Kazuya Yamamoto
February 22, 2021 (v1)
Keywords: 2-deoxyamylose, d-glucal, enzymatic copolymerization, heteropolysaccharide, α-glucan phosphorylase
α-Glucan phosphorylase catalyzes the enzymatic polymerization of α-d-glucose 1-phosphate (Glc-1-P) monomers from a maltooligosaccharide primer to produce α(1→4)-glucan—i.e., amylose. In this study, by exploiting the weak specificity for the substrate recognition of a thermostable α-glucan phosphorylase (from Aquifex aeolicus VF5), we investigated the enzymatic copolymerization of 2-deoxy-α-d-glucose 1-phosphate (dGlc-1-P), which was produced in situ from d-glucal, with Glc-1-P to obtain non-natural heteropolysaccharides composed of α(1→4)-linked dGlc/Glc units—i.e., partially 2-deoxygenated amylose. The reactions were carried out at different monomer feed ratios using a maltotriose primer at 40 °C for 24 h. The products were precipitated from the reaction medium, isolated by centrifugation, and subjected to 1H NMR spectroscopic and powder X-ray diffraction measurements to evaluate their chemical and crystalline structures, respectively. Owing to its amorphous nature, the partially 2-de... [more]
Self-Humidifying Proton Exchange Membranes for Fuel Cell Applications: Advances and Challenges
Seyed Hesam Mirfarsi, Mohammad Javad Parnian, Soosan Rowshanzamir
February 22, 2021 (v1)
Keywords: gas cross-over, nanocomposite membranes, polymer electrolyte fuel cells, proton exchange membranes, self-humidifying membranes, ultra-thin membranes
Polymer electrolyte fuel cells (PEFCs) provide efficient and carbon-free power by converting the hydrogen chemical energy. The PEFCs can reach their greatest performance in humidified condition, as proton exchange membranes (PEMs) should be humidified for their proton transportation function. Thus, external humidifiers are commonly employed to increase the water content of reactants. However, being burdened with external humidifiers can make the control of PEFCs complicated and costly, in particular for transportation application. To overcome this issue, self-humidifying PEMs have been introduced, with which PEFC can be fed by dry reactants. In fact, internal humidification is accomplished by produced water from the recombination of permeated hydrogen and oxygen gases on the incorporated platinum catalysts within the PEM. While the water production agent remains constant, there is a broad range of additives that are utilized to retain the generated water and facilitate the proton condu... [more]
Process of Obtaining Chromium Nitride in the Combustion Mode under Conditions of Co-Flow Filtration
Nikolay Evseev, Mansur Ziatdinov, Vladimir Romandin, Alexander Zhukov, Aidos Tolynbekov, Yuliya Ryzhikh
February 22, 2021 (v1)
Keywords: chromium nitride, co-flow, filtration combustion, inverse combustion wave, nitrogen–argon mixture, self-propagating high-temperature synthesis, superadiabatic heating
In this work, the combustion process of chromium powder in the co-flow filtration mode was studied. The effect of nitrogen-containing gas flow rate on the nitridation of combustion products is shown. The effect of the amount of argon in the nitrogen−argon mixture on the burning rate and the burning temperature of the chromium powder is shown. It was found that an increase in the percentage of argon in the nitrogen−argon mixture can lead to the formation of an inverse combustion wave. The actual burning temperature is higher than adiabatic burning temperature in the co-flow filtration mode, thus the phenomenon of superadiabatic heating is observed. The phase composition of the obtained combustion products was studied. It was shown that the forced filtration mode allows for synthesizing non-stoichiometric Cr2N nitride.
Is Anoxic Operation Effective to Control Nitrate Build-Up and Sludge Loss for the Combined Partial Nitritation and Anammox (CPNA) Process?
Hongyan Wang, Yuanyue Wang, Junya Zhang, Qianwen Sui, Dazhou Hu, Fumin Zuo, Yuansong Wei
February 22, 2021 (v1)
Keywords: CPNA, nitrate build-up, sludge loss, start-up
There were three main issues of long start-up period, nitrate build-up and sludge loss during the operation of combined partial-nitritation anammox (CPNA). To fully start up the CPNA reactor, the fast achievement of partial-nitritation (PN) was the first step. Firstly, the PN process was successfully achieved within 22 days by 2 mg·L−1 hydroxylamine (NH2OH) addition and online intermittent aeration control at 0.2~0.3 mg·L−1 dissolved oxygen (DO). Then, a novel strategy of adding anoxic stirring phase between feeding and aeration period during CPNA operation was applied. It was shown effective to control nitrate build-up since the mole ratio of NO3−-N production and NH4+-N removed (MNRR) was mostly below 15%. Also, the procedure adjustment was proven useful to alleviate sludge loss by sustaining filamentous bacteria that could act as biomass framework and reduce nitrate substrate. The filamentous denitrifying bacteria could cause sludge bulking. The total nitrogen removal rate (TNRR) va... [more]
Effects in Band Gap for Photocatalysis in TiO2 Support by Adding Gold and Ruthenium
Omar Ricardo Fonseca-Cervantes, Alejandro Pérez-Larios, Víctor Hugo Romero Arellano, Belkis Sulbaran-Rangel, Carlos Alberto Guzmán González
February 22, 2021 (v1)
Keywords: oxidized and reduced oxidation states, photocatalysis, sol–gel method, supported on TiO2
One of the key features of a nano catalyst for photocatalysis is the band gap, because, through its analysis, the potential of the catalyst can be determined. In this investigation, the impact on the band gap of different catalysts made by the sol−gel method, compared with TiO2 P25 Sigma-Aldrich, showing the effect of using gold or ruthenium as a metal supported on TiO2, with two different dosage percentages of 1 and 3 percent, was analysed. Additionally, two oxidation states of the catalyst, the reduced form and the oxidized form of the metal, were used to see the effect on the band gap. The experiments show that the gold addition has a higher beneficial effect on the band gap for the UV region (ultra violet region), and the ruthenium addition has a higher beneficial effect for the UV/visible region. The preferred oxidation state for the band gap was the oxidized state. The characterisation of the catalyst provided an insight into the relation between the band gap and the catalyst its... [more]
Investigation of Itaconic Acid Separation by Operating a Commercialized Electrodialysis Unit with Bipolar Membranes
Tamás Rózsenberszki, Péter Komáromy, Enikő Kőrösi, Péter Bakonyi, Nándor Nemestóthy, Katalin Bélafi-Bakó
February 22, 2021 (v1)
Keywords: bipolar membrane, by-product, electrodialysis, integrated system, itaconic acid
Nowadays, the merging of membrane and fermentation technologies is receiving significant attention such as in the case of itaconic acid (IA) production, which is considered as a value-added chemical. Its biotechnological production is already industrially established; however, the improvements of its fermentative and recovery steps remain topics of significant interest due to sustainable development trends. With an adequate downstream process, the total price of IA production can be reduced. For the task of IA recovery, a contemporary electro-membrane separation processes, electrodialysis with bipolar membranes (EDBM), was proposed and employed in this work. In the experiments, the laboratory-scale, commercialized EDBM unit (P EDR-Z/4x) was operated to separate IA from various model solutions compromised of IA (5−33 g/L), glucose (varied in 15−33 g/L as a residual substrate during IA fermentation) and malic acid (varied in 0−1 g/L as a realistic by-product of IA fermentation) under dif... [more]
Study of H2S Removal Capability from Simulated Biogas by Using Waste-Derived Adsorbent Materials
Hua Lun Zhu, Davide Papurello, Marta Gandiglio, Andrea Lanzini, Isil Akpinar, Paul R. Shearing, George Manos, Dan J.L. Brett, Ye Shui Zhang
February 3, 2021 (v1)
Keywords: activated carbon, Adsorption, biochar, Catalysis, circular economy, H2S, waste
Three waste-derived adsorbent materials (wood-derived biochar, sludge-derived activated carbon and activated ash) were pre-activated at the laboratory scale to apply them for the removal of H2S from a biogas stream. The H2S removal capabilities of each material were measured by a mass spectrometer, to detect the H2S concentration after the adsorption in an ambient environment. The activated ash adsorbent has the highest removal capacity at 3.22 mgH2S g−1, while wood-derived biochar has slightly lower H2S removal capability (2.2 mgH2S g−1). The physicochemical properties of pristine and spent materials were characterized by the thermogravimetric analyzer, elemental analysis, X-ray fluorescence spectroscopy and N2 adsorption and desorption. Wood-derived biochar is a highly porous material that adsorbs H2S by physical adsorption of the mesoporous structure. Activated ash is a non-porous material which adsorbs H2S by the reaction between the alkaline compositions and H2S. This study shows... [more]
Glycerol Oxidation over Supported Gold Catalysts: The Combined Effect of Au Particle Size and Basicity of Support
Ekaterina Pakrieva, Ekaterina Kolobova, Dmitrii German, Marta Stucchi, Alberto Villa, Laura Prati, Sónia. A.C. Carabineiro, Nina Bogdanchikova, Vicente Cortés Corberán, Alexey Pestryakov
February 3, 2021 (v1)
Keywords: base additives, catalyst selectivity, glyceric acid, glycerol oxidation, glycolic acid, gold catalysts, tartronic acid
Gold nanoparticles supported on various oxides (CeO2, CeO2/TiO2, MgO, MgO/TiO2, La2O3, La2O3/TiO2) (with 4 wt.% Au loading) were investigated in the liquid (aqueous) phase oxidation of glycerol by molecular oxygen under mild conditions, in the presence of alkaline earth (CaO, SrO and MgO) or alkaline (NaOH) bases. Full conversion and selectivity between 38 and 68% to sodium glycerate were observed on different Au supported catalysts (Au/MgO/TiO2, Au/La2O3/TiO2, Au/CeO2 and Au/CeO2/TiO2). The combined effect of Au particle size and basicity of the support was suggested as the determining factor of the activity. Agglomeration of gold nanoparticles, found after the reaction, led to the deactivation of the catalysts, which prevents the further oxidation of sodium glycerate into sodium tartronate. Promising results were obtained with the use of alkaline earth bases (CaO, SrO, MgO), leading to the formation of free carboxylic acids instead of salts, which are formed in the presence of the mo... [more]
Synthesis of Calcium Orthophosphates by Chemical Precipitation in Aqueous Solutions: The Effect of the Acidity, Ca/P Molar Ratio, and Temperature on the Phase Composition and Solubility of Precipitates
Mykola V. Nikolenko, Kateryna V. Vasylenko, Victoria D. Myrhorodska, Andrii Kostyniuk, Blaž Likozar
December 28, 2020 (v1)
Keywords: Ca-deficient hydroxyapatite, hydroxyapatite, solubility isotherm, solubility product, wet chemical precipitation
Studies on chemical precipitation of the calcium orthophosphates have shown that their phase compositions do not vary depending on molar ratio Ca/P but are sensitive to solutions acidity and temperature. These are two key factors that determine the phase transformation progress of metastable phases into less soluble precipitates of the phosphates. It was proposed to compare calcium orthophosphates solubility products with calcium cations quantities in their formulas. It was found that there was a linear correlation between calcium orthophosphates specific solubility products and their molar ratios Ca/P if hydroxyapatite and its Ca-deficient forms were excluded from consideration. It was concluded that the relatively large deviations of their solubility products from the found correlation should be thought of as erroneous data. That is why solubility products were changed in accordance with correlation dependence: pKS for hydroxyapatite was 155, pKS for Ca-deficient hydroxyapatites was... [more]
Showing records 76 to 100 of 281. [First] Page: 1 2 3 4 5 6 7 8 Last
[Show All Subjects]