Browse
Subjects
Records with Subject: Reaction Engineering
51. LAPSE:2021.0689
Iron-Based Catalytically Active Complexes in Preparation of Functional Materials
July 29, 2021 (v1)
Subject: Reaction Engineering
Keywords: “green” oxidants, controlled radical polymerization, heterogeneous catalysis, homogeneous catalysis, iron-based catalysts, oxidation processes
Iron complexes are particularly interesting as catalyst systems over the other transition metals (including noble metals) due to iron’s high natural abundance and mediation in important biological processes, therefore making them non-toxic, cost-effective, and biocompatible. Both homogeneous and heterogeneous catalysis mediated by iron as a transition metal have found applications in many industries, including oxidation, C-C bond formation, hydrocarboxylation and dehydration, hydrogenation and reduction reactions of low molecular weight molecules. These processes provided substrates for industrial-scale use, e.g., switchable materials, sustainable and scalable energy storage technologies, drugs for the treatment of cancer, and high molecular weight polymer materials with a predetermined structure through controlled radical polymerization techniques. This review provides a detailed statement of the utilization of homogeneous and heterogeneous iron-based catalysts for the synthesis of bo... [more]
52. LAPSE:2021.0679
Methanol Synthesis with Steel-Mill Gases: Simulation and Practical Testing of Selected Gas Utilization Scenarios
July 29, 2021 (v1)
Subject: Reaction Engineering
Keywords: Carbon2Chem®, gas recirculation, MegaMax®800, methanol synthesis, process simulation, steel-mill gases
The utilization of CO2-containing steel-mill gases for synthesis of methanol was investigated. Four different scenarios with syngas derived from steel-mill gases were considered. A process model for an industrial methanol production including gas recirculation was applied to provide realistic conditions for catalyst performance tests. A long-term test series was performed in a close-to-practice setup to demonstrate the stability of the catalyst. In addition, the experimental results were used to discuss the quality of the simulation results. Kinetic parameters of the reactor model were fitted. A comparison of two different kinetic approaches and the experimental results revealed which approach better fits CO-rich or CO2-rich steel-mill gases.
53. LAPSE:2021.0659
Study of Deactivation in Suzuki Reaction of Polymer-Stabilized Pd Nanocatalysts
July 29, 2021 (v1)
Subject: Reaction Engineering
Keywords: catalyst stability, hyper-cross-linked polystyrene, palladium nanoparticles, Suzuki cross-coupling
This work is addressed to the phenomenon of catalyst deactivation taking place during the repeated uses in the reaction of Suzuki-Miyaura (S-M) cross-coupling, which is widely applied in industry for C-C bond formation. Ligandless catalysts based on Pd(0) NPs supported on hyper-cross-linked polystyrene (HPS) of two types (non-functionalized and bearing tertiary amino groups) were studied in a model S-M reaction between 4-bromoanisole and phenylboronic acid. Synthesized catalysts were shown to be highly active under mild reaction conditions. HPS allows stabilization of Pd(0) NPs and prevents their agglomeration and detectable Pd leaching. However, the loss of catalytic activity was observed during recycling. The deactivation issue was assigned to the hydrophobic nature of non-functionalized HPS, which allowed a strong adsorption of cross-coupling product during the catalyst separation procedure. A thorough washing of Pd/HPS catalyst by hydrophobic solvent was found to improve to the big... [more]
54. LAPSE:2021.0652
Promising Catalytic Systems for CO2 Hydrogenation into CH4: A Review of Recent Studies
July 29, 2021 (v1)
Subject: Reaction Engineering
Keywords: active metals, CO2 conversion, CO2 methanation, heterogeneous catalysts, Power-to-Gas, reaction mechanism, Sabatier reaction, supports
The increasing utilization of renewable sources for electricity production turns CO2 methanation into a key process in the future energy context, as this reaction allows storing the temporary renewable electricity surplus in the natural gas network (Power-to-Gas). This kind of chemical reaction requires the use of a catalyst and thus it has gained the attention of many researchers thriving to achieve active, selective and stable materials in a remarkable number of studies. The existing papers published in literature in the past few years about CO2 methanation tackled the catalysts composition and their related performances and mechanisms, which served as a basis for researchers to further extend their in-depth investigations in the reported systems. In summary, the focus was mainly in the enhancement of the synthesized materials that involved the active metal phase (i.e., boosting its dispersion), the different types of solid supports, and the frequent addition of a second metal oxide... [more]
55. LAPSE:2021.0651
Carbon Source Competition in Biological Selenate Reduction under Other Oxyanions Contamination
July 29, 2021 (v1)
Subject: Reaction Engineering
Keywords: biological reduction, fixed-bed biofilm reactor, nitrate, perchlorate, selenate
Selenate removal in drinking water is being vigorously debated due to the various health issues concerned. As a viable treatment option, this study investigated a fixed-bed biofilm reactor (FBBR) with internal recycling. The experimental design tested how hydraulic loading rate and electron donor affect selenate reduction together with other oxyanions. The tested accompanying oxyanions were nitrate and perchlorate and experiments were designed to test how an FBBR responded to the limited electron donor condition. The results showed that the reactor achieved almost complete selenate reduction with the initial hydraulic loading rate of 12 m3/m2/day (influent concentration of 1416 µg SeO42−/L). Increasing the hydraulic loading rates to 16.24 and 48 m3/m2/day led to a gradual decline in selenate removal efficiency. A sufficient external carbon source (C:N of 3.3:1) achieved an almost complete reduction of nitrate as well as selenate. The FBBR acclimated to selenate instantaneously and redu... [more]
56. LAPSE:2021.0650
Mechanistic Approach to Thermal Production of New Materials from Asphaltenes of Castilla Crude Oil
July 28, 2021 (v1)
Subject: Reaction Engineering
Keywords: asphaltenes, chain reaction, pyrolysis, structural parameters
Asphaltenes are compounds present in crude oils that influence their rheology, raising problems related to the extraction, transport, and refining. This work centered on the chemical and structural changes of the asphaltenes from the heavy Colombian Castilla crude oil during pyrolysis between 330 and 450 °C. Also, the development of new strategies to apply these macromolecules, and the possible use of the cracking products as a source of new materials were analyzed. The obtained products (coke, liquid, and gas) were collected and evaluated through the techniques of proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR), elemental composition, Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), saturates, aromatics, resins, and asphaltenes (SARA) analysis, and gas chromatography−mass spectrometry (GC-MS). A comparison of the applied methods showed that the asphaltene molecules increased the average size of their aromatic sheets, lost their aliphatic... [more]
57. LAPSE:2021.0644
Chemoenzymatic Synthesis of New Aromatic Esters of Mono- and Oligosaccharides
July 28, 2021 (v1)
Subject: Reaction Engineering
Keywords: aromatic oligosaccharides, lipases, sugar ester
An efficient and convenient chemoenzymatic route for the synthesis of novel phenolic mono-, di- and oligosaccharide esters is described. Acetal derivatives of glucose, sucrose, lactose and inulin were obtained by chemical synthesis. The fully characterized pure sugar acetals were subjected to enzymatic esterification with 3-(4-hydroxyphenyl) propionic acid (HPPA) in the presence of Novozyme 435 lipase as a biocatalyst. The aromatic esters of alkyl glycosides and glucose acetal were obtained with good esterification yields, characterized by mass spectrometry (MALDI-TOF MS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR, 13C NMR). The synthesis of aromatic esters of disaccharide acetals was successful only for the enzymatic esterification of sucrose acetal. The new chemoenzymatic route allowed the synthesis of novel aromatic esters of inulin as the inulin monoacetal monoester and diester and the inulin diacetal monoester with a polymerization degree of... [more]
58. LAPSE:2021.0635
Effect of Temperature and Concentration of Zeolite Catalysts from Geothermal Solid Waste in Biodiesel Production from Used Cooking Oil by Esterification−Transesterification Process
July 26, 2021 (v1)
Subject: Reaction Engineering
Keywords: analcime zeolite catalyst, biodiesel, geothermal solid waste, used cooking oil, yield of biodiesel
The production of biodiesel using zeolite catalysts from geothermal solid waste has been studied. This study aims to make zeolite catalysts as catalysts in biodiesel production, assessing the effect of catalyst concentration, and temperature in the esterification−transesterification process on the biodiesel yield produced. The results showed that the synthesized zeolite catalyst was an analcime zeolite catalyst (Al1.9Na1.86O12Si4). The biodiesel yield of 98.299% with 100% fatty acid alkyl ester (FAAE) content was achieved at a catalyst concentration of 5%wt and a reaction temperature of 300 °C for one-hour reaction time. The yield of biodiesel decreased with repeated catalysts, which experienced morphological changes before and after three usage times. Consequently, in this case, the catalyst cannot be regenerated.
59. LAPSE:2021.0609
Synthesis of 2-(4-hydroxyphenyl)ethyl 3,4,5-Trihydroxybenzoate and Its Inhibitory Effect on Sucrase and Maltase
July 19, 2021 (v1)
Subject: Reaction Engineering
Keywords: hyperglycemia, inhibitor, kinetics assay, maltase, sucrase
We report on the synthesis of an active component, 2-(4-hydroxyphenyl)ethyl 3,4,5-trihydroxybenzoate (HETB), from Rhodiola crenulata. Subsequent analysis revealed that HETB exhibits α-glucosidase inhibitory activities on maltase and sucrase, with potency exceeding that of the known α-glucosidase inhibitors (voglibose and acarbose). An inhibition kinetics study revealed that HETB, acarbose, and voglibose bind to maltase and sucrase, and HETB was shown to be a strong competitive inhibitor of maltase and sucrase. In a molecular docking study based on the crystal structure of α-glucosidase from Saccharomyces cerevisiae, we revealed the HETB binding in the active site of maltase via hydrogen-bond interactions with five amino acid residues: Ser 240, Asp 242, Glu 277, Arg 315, and Asn 350. For HETB docked to the sucrase active site, seven hydrogen bonds (with Asn 114, Glu 148, Gln 201, Asn 228, Gln 381, Ile 383, and Ser 412) were shown.
60. LAPSE:2021.0606
Comparative Technical Process and Product Assessment of Catalytic and Thermal Pyrolysis of Lignocellulosic Biomass
July 19, 2021 (v1)
Subject: Reaction Engineering
Keywords: Biofuels, catalysts, lignocellulosic biomass, process and product simulation, pyrolysis
Availability of sustainable transportation fuels in future hinges on the use of lignocellulosic resources for production of biofuels. The process of biomass pyrolysis can be used to convert solid biomass resources into liquid fuels. In this study, laboratory experiments and process simulations were combined to gain insight into the technical performance of catalytic and thermal pyrolysis processes. Waste pinewood was used as a feedstock for the processes. The pyrolysis took place at 500 °C and employs three different catalysts, in the case of the catalytic processes. A process model was developed with Aspen Plus and a wide range of representative components of bio-oil were used to model the properties of the bio-oil blend. The results of the process model calculations show that catalytic pyrolysis process produces bio-oil of superior quality. Different technical process scenarios were explored based on the properties of the bio-oil after separation of water-soluble components, with the... [more]
61. LAPSE:2021.0604
Revisiting the Role of Mass and Heat Transfer in Gas−Solid Catalytic Reactions
July 13, 2021 (v1)
Subject: Reaction Engineering
Keywords: chemical kinetics, gas–solid catalytic reactions, heat and mass transfer
The tremendous progress in the computing power of modern computers has in the last 20 years favored the use of numerical methods for solving complex problems in the field of chemical kinetics and of reactor simulations considering also the effect of mass and heat transfer. Many classical textbooks dealing with the topic have, therefore, become quite obsolete. The present work is a review of the role that heat and mass transfer have in the kinetic studies of gas−solid catalytic reactions. The scope was to collect in a relatively short document the necessary knowledge for a correct simulation of gas−solid catalytic reactors. The first part of the review deals with the most reliable approach to the description of the heat and mass transfer outside and inside a single catalytic particle. Some different examples of calculations allow for an easier understanding of the described methods. The second part of the review is related to the heat and mass transfer in packed bed reactors, considerin... [more]
62. LAPSE:2021.0534
Biosorption of Co2+ Ions from Aqueous Solution by K2HPO4-Pretreated Duckweed Lemna gibba
June 21, 2021 (v1)
Subject: Reaction Engineering
Keywords: biosorption, desorption, divalent cobalt, Lemna gibba, SEM-EDX
The wastewater of the many industries that use divalent cobalt (Co2+)-containing compounds has elevated levels of this metal. Thus, novel technology is needed to efficiently remove Co2+ ions from aqueous solutions. Biosorption is a low-cost technique capable of removing heavy metals from contaminated water. This study aims to evaluate the performance of KH2PO4-pretreated Lemna gibba (PLEM) as a biosorbent of Co2+ in aqueous solutions tested under different conditions of pH, particle size, and initial Co2+ concentration. Kinetic, equilibrium, and thermodynamic studies were conducted. The capacity of biosorption increased with a greater initial Co2+ concentration and was optimal at pH 7.0 and with small-sized biosorbent particles (0.3−0.8 mm). The pseudo-second-order sorption model best describes the experimental data on Co2+ biosorption kinetics. The Sips and Redlich-Peterson isotherm models best predict the biosorption capacity at equilibrium. According to the thermodynamic study, bios... [more]
63. LAPSE:2021.0516
Quantifying the Effect of COD to TN Ratio, DO Concentration and Temperature on Filamentous Microorganisms’ Population and Trans-Membrane Pressure (TMP) in Membrane Bio-Reactors (MBR)
June 10, 2021 (v1)
Subject: Reaction Engineering
Keywords: filament index, filamentous bacteria, fouling control, fouling modeling, Membrane Bioreactors (MBR)
Using moderate populations of filaments in the biomass of Membrane Bio-Reactors (MBRs) is a biological anti-fouling method which has been increasingly applied over the last few years. This study aims to quantify the effect of COD to TN ratio, Dissolved Oxygen (DO) concentration and temperature on filaments’ population and Trans-Membrane Pressure (TMP) in a pilot-scale MBR, with a view to reducing membrane fouling. The novelty of the present work concerns the development of a mathematical equation that correlates fouling rate (dTMP/dt) with the population of filamentous microorganisms, assessed by the Filament Index (FI), and with the concentration of the carbohydrate fraction of Soluble Microbial Products (SMPc). Apart from TMP and SMPc, other fouling-related biomass characteristics, such as sludge filterability and settleability, were also examined. It was shown that at high COD to TN ratio (10:1), low DO concentration in the filaments’ tank (0.5 ± 0.3 mg/L) and high temperature (24−3... [more]
64. LAPSE:2021.0503
Catalytic Performance of Lanthanum Promoted Ni/ZrO2 for Carbon Dioxide Reforming of Methane
June 10, 2021 (v1)
Subject: Reaction Engineering
Keywords: catalyst stability, lanthanum promoters, methane dry reforming, nickel catalyst, zirconium oxide
Nickel catalysts supported on zirconium oxide and modified by various amounts of lanthanum with 10, 15, and 20 wt.% were synthesized for CO2 reforming of methane. The effect of La2O3 as a promoter on the stability of the catalyst, the amount of carbon formed, and the ratio of H2 to CO were investigated. In this study, we observed that promoting the catalyst with La2O3 enhanced catalyst activities. The conversions of the feed, i.e., methane and carbon dioxide, were in the order 10La2O3 > 15La2O3 > 20La2O3 > 0La2O3, with the highest conversions being about 60% and 70% for both CH4 and CO2 respectively. Brunauer−Emmett−Teller (BET) analysis showed that the surface area of the catalysts decreased slightly with increasing La2O3 doping. We observed that 10% La2O3 doping had the highest specific surface area (21.6 m2/g) and the least for the un-promoted sample. The higher surface areas of the promoted samples relative to the reference catalyst is an indication of the concentration of the meta... [more]
65. LAPSE:2021.0500
Influence of Gasoline Addition on Biodiesel Combustion in a Compression-Ignition Engine with Constant Settings
June 10, 2021 (v1)
Subject: Reaction Engineering
Keywords: biodiesel, combustion, dual fuel, Gasoline, ignition delay
This paper presents results of investigation of co-combustion process of biodiesel with gasoline, in form of mixture and using dual fuel technology. The main objective of this work was to show differences in both combustion systems of the engine powered by fuels of different reactivity. This paper presents parameters of the engine and the assessment of combustion stability. It turns out that combustion process of biodiesel was characterized by lower ignition delay compared to diesel fuel combustion. For 0.54 of gasoline energetic fraction, the ignition delay increased by 25% compared to the combustion of the pure biodiesel, but for dual fuel technology for 0.95 of gasoline fraction it was decreased by 85%. For dual fuel technology with the increase in gasoline fraction, the specific fuel consumption (SFC) was decreased for all analyzed fractions of gasoline. In the case of blend combustion, the SFC was increased in comparison to dual fuel technology. An analysis of spread of ignition d... [more]
66. LAPSE:2021.0499
Laser-Induced Ignition and Combustion Behavior of Individual Graphite Microparticles in a Micro-Combustor
June 10, 2021 (v1)
Subject: Reaction Engineering
Keywords: graphite, laser ignition, microscale combustion, photophoresis, repetitive extinction
Microscale combustion has potential application in a micro power generator. This paper studied the ignition and combustion behavior of individual graphite microparticles in a micro-combustor to explore the utilization of carbon-based fuels at the microscale system. The individual graphite microparticles inside the micro-combustor were ignited by a highly focused laser in an air flow with natural convection at atmospheric temperature and pressure. The results show that the ignition of graphite microparticles was heterogeneous. The particle diameter had a small weak effect on ignition delay time and threshold ignition energy. The micro-combustor wall heat losses had significant effects on the ignition and combustion. During combustion, flame instability, photophoresis, repetitive extinction and reignition were identified. The flame structure was asymmetric, and the fluctuation of flame front and radiation intensity showed combustion instability. Photophoretic force pushed the graphite aw... [more]
67. LAPSE:2021.0484
Carbonaceous Adsorbent Derived from Sulfur-Impregnated Heavy Oil Ash and Its Lead Removal Ability from Aqueous Solution
May 28, 2021 (v1)
Subject: Reaction Engineering
Keywords: heavy oil ash, K2S immerse, lead removal, pyrolysis, selectivity
A novel carbonaceous adsorbent was prepared from sulfur-impregnated heavy oil ash via pyrolysis using potassium sulfide (K2S) solution, and its ability to remove lead (Pb2+) from aqueous solutions was examined. It was compared with an adsorbent synthesized by conventional pyrolysis using potassium hydroxide (KOH) solution. Specifically, the raw ash was immersed in 1 M K2S solution or 1 M KOH solution for 1 day and subsequently heated at 100−1000 °C in a nitrogen (N2) atmosphere. After heating for 1 h, the solid was naturally cooled in N2 atmosphere, and subsequently washed and dried to yield the product. Regardless of the pyrolysis temperature, the product generated using K2S (Product-K2S) has a higher sulfur content than that obtained using KOH (Product-KOH). Moreover, Product-K2S has a higher lead removal ability than Product-KOH, whereas the specific surface area of the former is smaller than that of the latter. Product-K2S obtained at 300 °C (Product-K2S-300) achieves the highest l... [more]
68. LAPSE:2021.0471
NOx Emission Reduction by Advanced Reburning in Grate-Rotary Kiln for the Iron Ore Pelletizing Production
May 27, 2021 (v1)
Subject: Reaction Engineering
Keywords: advanced reburning, denitrification, grate-rotary kiln, NOx reduction
The NOx reduction in the iron ore pelletizing process becomes an important environmental concern owing to its role in the formation of photochemical smog and acid rain. Thus, it is essential to develop new technologies for reducing NOx emissions in order to contribute to the cleaner production of pellets. In this paper, NOx reduction by advanced reburning ingrate-rotary kiln for oxidized pellet production was performed on a laboratory-scale gas kiln. Temperature and NH3/NOx molar ratio (NSR) were the key factors affecting the reduction of NOx. A better denitrification effect can be obtained on flus gas with higher initial NOx concentration, at temperature = 900 °C, NSR = 1.2, and reaction time exceeds one second. NOx reduction rate had reached 55−65% when the initial NOx concentration was above 400 ppm, and exceeds 70% when the initial NOx concentration was around 680 ppm. Urea solution has the best denitrification effect compared with NH3·H2O and NH4HCO3 solution. As for additives, th... [more]
69. LAPSE:2021.0467
Alcohol Dehydration by Extractive Distillation with Use of Aminoethers of Boric Acid
May 27, 2021 (v1)
Subject: Reaction Engineering
Keywords: aqueous solution, Extraction, UNIFAC model, vapor–liquid equilibrium
Aminoethers of boric acid (AEBA) were studied as potential extractants for the separation of aqueous−alcoholic azeotropic mixtures by extractive distillation. The conditions of vapor−liquid equilibrium in aqueous solutions of ethanol and isopropanol in the presence of AEBA were studied. The division of AEBA molecules into group components was proposed, and previously unknown geometric parameters of the boron group and the energetic pair parameters of the boron group with the alkane group, ether group, amine-3d group, and alcohol group were determined within the framework of the Universal Functional Group Activity Coefficient (UNIFAC) model. The modeling of the extractive rectification process of an ethanol−water mixture with AEBA as extractant has been carried out. The dependences of the cost function on the extractant flow rate, the residual water content in it and the number of theoretical trays were obtained. A technological scheme for ethanol dehydration has been proposed, and its... [more]
70. LAPSE:2021.0454
Controlled Degradation of Lubricating Media by Means of an Accelerated Electron Beam
May 26, 2021 (v1)
Subject: Reaction Engineering
Keywords: accelerated electron beam, changes in the properties of the lubricating medium, engines, ionizing radiation
The article deals with the possibilities of using electron accelerator for controlled aging of lubricating media used in special vehicles. During use, e.g., in combustion engines, the lubricants get contaminated and thermo-oxidative degradation also occurs. The pilot project confirms the hypothesis that ionizing radiation makes it possible to simulate the operating load of lubricating media, which was repeatedly confirmed by long-term monitoring of changes in viscosity of statistically significant samples of motor oils used in special equipment. Preliminary test results also show that there are likely to be possibilities to influence other selected properties, such as the coefficient of friction depending on the radiation dose. The authors describe physicochemical processes during irradiation and, in the example of kinematic viscosity, present summary results for selected lubricating media.
71. LAPSE:2021.0433
Charcoal as an Alternative Reductant in Ferroalloy Production: A Review
May 26, 2021 (v1)
Subject: Reaction Engineering
Keywords: bio-based reductant, charcoal, ferroalloy industry, kiln, pyrolysis
This paper provides a fundamental and critical review of biomass application as renewable reductant in integrated ferroalloy reduction process. The basis for the review is based on the current process and product quality requirement that bio-based reductants must fulfill. The characteristics of different feedstocks and suitable pre-treatment and post-treatment technologies for their upgrading are evaluated. The existing literature concerning biomass application in ferroalloy industries is reviewed to fill out the research gaps related to charcoal properties provided by current production technologies and the integration of renewable reductants in the existing industrial infrastructure. This review also provides insights and recommendations to the unresolved challenges related to the charcoal process economics. Several possibilities to integrate the production of bio-based reductants with bio-refineries to lower the cost and increase the total efficiency are given. A comparison of chall... [more]
72. LAPSE:2021.0408
Study of a Method to Effectively Remove Char Byproduct Generated from Fast Pyrolysis of Lignocellulosic Biomass in a Bubbling Fluidized Bed Reactor
May 25, 2021 (v1)
Subject: Reaction Engineering
Keywords: BFB reactor, bio-oil, biochar, fast pyrolysis, inner and outer tubes, wood sawdust
A critical issue in the design of bubbling fluidized bed reactors for biomass fast pyrolysis is to maintain the bed at a constant level to ensure stable operation. In this work, a bubbling fluidized bed reactor was investigated to deal with this issue. The reactor consists of inner and outer tubes and enables in situ control of the fluidized-bed level in the inner-tube reactor with a mechanical method during biomass fast pyrolysis. The significant fraction of biochar produced from the fast pyrolysis in the inner-tube reactor was automatically removed through the annulus between the inner and outer tubes. The effect of pyrolysis temperature (426−528 °C) and feeding rate (0.8−1.8 kg/h) on the yield and characteristics of bio-oil, biochar, and gaseous products were examined at a 15 L/min nitrogen carrier gas flow rate for wood sawdust with a 0.5−1.0 mm particle size range as a feed. The bio-oil reached a maximum yield of 62.4 wt% on a dry basis at 440 °C, and then slowly decreased with in... [more]
73. LAPSE:2021.0398
Equilibrium, Kinetic and Thermodynamic Studies for Sorption of Phosphate from Aqueous Solutions Using ZnO Nanoparticles
May 25, 2021 (v1)
Subject: Reaction Engineering
Keywords: aqueous solution, equilibrium, kinetic, nanoparticles, phosphate, thermodynamic, ZnO
In this study, ZnO nanoparticles were fabricated by using the hydrothermal method for adsorption of phosphate from wastewater. The obtained ZnO nanorods were characterized by powder X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), specific surface area (BET) and energy dispersive X-ray spectroscopy (EDS). The ZnO materials were applied for adsorption of phosphate from water using batch experiments. The effects of pH (4−10), adsorption time (30−240 min), the amount of adsorbent (0.1−0.7 g/L) and initial concentration of phosphate (147.637−466.209 mg/L) on the adsorption efficiency were investigated. The optimum condition was found at pH = 5 and at an adsorption time of 150 min. The adsorption was fitted well with the Langmuir isotherm and the maximum adsorption capacity was calculated to be 769.23 mg/g. These results show that ZnO nanomaterial would highly promising for adsorbing phosphate from water. The adsorption of phosphate on ZnO nanomaterials follows the... [more]
74. LAPSE:2021.0392
Direct Solid Oxide Electrolysis of Carbon Dioxide: Analysis of Performance and Processes
May 24, 2021 (v1)
Subject: Reaction Engineering
Keywords: Carbon Dioxide, carbon dioxide reduction, carbon dioxide utilization, CO2-electrolysis, high-temperature electrolysis, solid oxide electrolysis
Chemical industries rely heavily on fossil resources for the production of carbon-based chemicals. A possible transformation towards sustainability is the usage of carbon dioxide as a source of carbon. Carbon dioxide is activated for follow-up reactions by its conversion to carbon monoxide. This can be accomplished by electrochemical reduction in solid oxide cells. In this work, we investigate the process performance of the direct high-temperature CO2 electrolysis by current-voltage characteristics (iV) and Electrochemical Impedance Spectroscopy (EIS) experiments. Variations of the operation parameters temperature, load, fuel utilization, feed gas ratio and flow rate show the versatility of the procedure with maintaining high current densities of 0.75 up to 1.5 A·cm−2, therefore resulting in high conversion rates. The potential of the high-temperature carbon dioxide electrolysis as a suitable enabler for the activation of CO2 as a chemical feedstock is therefore appointed and shown.
75. LAPSE:2021.0376
Gasification Applicability of Korean Municipal Waste Derived Solid Fuel: A Comparative Study
May 17, 2021 (v1)
Subject: Reaction Engineering
Gaining energy independence by utilizing new and renewable energy resources has become imperative for Korea. Energy recovery from Korean municipal solid waste (MSW) could be a promising option to resolve the issue, as Korean MSW is highly recyclable due to its systematic separation, collection and volume-based waste disposal system. In this study, gasification experiments were conducted on Korean municipal waste-derived solid fuel (SRF) using a fixed bed reactor by varying the equivalence ratio (ER) to assess the viability of syngas production. Experiments were also conducted on coal and biomass under similar conditions to compare the experimental results, as the gasification applicability of coal and biomass are long-established. Experimental results showed that Korean SRF could be used to recover energy in form of syngas. In particular, 50.94% cold gas efficiency and 54.66% carbon conversion ratio with a lower heating value of 12.57 MJ/Nm3 can be achieved by gasifying the SRF at 0.4... [more]