Browse
Records Added in July 2018
Records added in July 2018
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025
Change month: June | July | August | September | October | November | December
Showing records 51 to 75 of 239. [First] Page: 1 2 3 4 5 6 7 Last
Substrate Effect on Carbon/Ceramic Mixed Matrix Membrane Prepared by a Vacuum-Assisted Method for Desalination
Yingjun Song, Julius Motuzas, David K. Wang, Greg Birkett, Simon Smart, João C. Diniz da Costa
July 31, 2018 (v1)
Subject: Materials
Keywords: ceramic substrate, desalination, mixed matrix membrane, phenolic resin, vacuum impregnation
This work investigates the effect of various membrane substrates and coating conditions on the formation of carbon/ceramic mixed matrix membranes for desalination application. The substrates were impregnated with phenolic resin via a vacuum-assisted method followed by carbonization under an inert gas. Substrates with pore sizes of 100 nm required a single impregnation step only, where short vacuum times (90%) and high water fluxes (up to 25 L m−2 h−1). The increase in water flux as a function of the vacuum time confirms the vacuum etching effect resulting from the vacuum-assisted method. Substrates with pore sizes of 140 nm required two impregnation steps. These pores were too large for the ceramic inter-particle space to be filled with phenolic resin via a single step. In the second impregnation step, increasing the concentration of the phenolic resin resulted in membranes with lower water fluxes. These results indicate that thicker films were formed by increasing the phenolic resin c... [more]
A Distributed Approach towards Improved Dissemination Protocol for Smooth Handover in MediaSense IoT Platform
Shabir Ahmad, Ishfaq Hussain, Muhammad Fayaz, Do-Hyeun Kim
July 31, 2018 (v1)
Keywords: handover management, Internet of Things, wireless sensor networks
Recently, the Internet has been utilized by many applications to convey time-sensitive messages. The persistently expanding Internet coverage and its easy accessibility have offered to ascend to a problem which was once regarded as not essential to contemplate. Nowadays, the Internet has been utilized by many applications to convey time-sensitive messages. Wireless access points have widely been used but these access points have limitations regarding area coverage. So for covering a wider space, various access points need to be introduced. Therefore, when the user moves to some other place, the devices expected to switch between access points. Packet loss amid the handovers is a trivial issue. MediaSense is an Internet of Things distributed architecture enabling the development of the IoT application faster. It deals with this trivial handover issue by utilizing a protocol called Distributed Context eXchange Protocol. However, this protocol is centralized in nature and also suffers in... [more]
Ionic Liquid (1-Butyl-3-Metylimidazolium Methane Sulphonate) Corrosion and Energy Analysis for High Pressure CO₂ Absorption Process
Aqeel Ahmad Taimoor, Saad Al-Shahrani, Ayyaz Muhammad
July 31, 2018 (v1)
Subject: Materials
Keywords: amines process simulation, CO2 absorption, ionic liquids
This study explores the possible use of ionic liquids as a solvent in a commercial high-pressure CO₂ removal process, to gain environmental and energy benefits. There are two main constraints in realizing this: ionic liquids can be corrosive, specifically when mixed with a water/amine solution with dissolved O₂ & CO₂; and CO₂ absorption within this process is not very well understood. Therefore, scavenging CO₂ to ppm levels from process gas comes with several risks. We used 1-butyl-3-methylimidazoium methane sulphonate [bmim][MS] as an ionic liquid because of its high corrosiveness (due to its acidic nature) to estimate the ranges of expected corrosion in the process. TAFEL technique was used to determine these rates. Further, the process was simulated based on the conventional absorption⁻desorption process using ASPEN HYSYS v 8.6. After preliminary model validation with the amine solution, [bmim][MS] was modeled based on the properties found in the literature. The energy compariso... [more]
Cuboid Packed-Beds as Chemical Reactors?
Raja Ghosh
July 31, 2018 (v1)
Keywords: chemical reactor, cuboid packed-bed, heat transfer, packed column, packed-bed reactor, residence time distribution
Columns are widely used as packed-bed or fixed-bed reactors in the chemical process industry. Packed columns are also used for carrying out chemical separation techniques such as adsorption, distillation, extraction and chromatography. A combination of the variability in flow path lengths, and the variability of velocity along these flow paths results in significant broadening in solute residence time distribution within columns, particularly in those having low bed height to diameter ratios. Therefore, wide packed-column reactors operate at low efficiencies. Also, for a column of a particular bed height, the ratio of heat transfer surface area to reactor volume varies inversely as the radius. Therefore, with wide columns, the available heat transfer area could become a limiting factor. In recent papers, box-shaped or cuboid packed-bed devices have been proposed as efficient alternatives to packed columns for carrying out chromatographic separations. In this paper, the use of cuboid pa... [more]
Recovery of Filtered Graphene Oxide Residue Using Elastic Gel Packed in a Column by Cross Flow
Yuji Takaoka, Manoka Miyoshi, Koichi Sakaguchi, Shintaro Morisada, Keisuke Ohto, Hidetaka Kawakita
July 31, 2018 (v1)
Keywords: cross flow, elastic gel, graphene oxide, recovery, separation
To recover the filtered residues on a gel layer in a column, the method using the elasticity of the gel layer and flowing water in a cross-flow manner is proposed. Polymerized spherical gel (40 μm) was packed in a column to a set height of 0.7 cm. The suspensions of graphene oxide at various sizes and shapes were injected on the top of the gel layer and then water was flowed at a flow rate of 1000 mL·h−1 until 0.10 MPa. By releasing the applied pressure, the elastic gel layer rose up, and the filtered graphene oxide also rose above the layer. This rise of the gel layer is due to the difference of pressure between the gel layer, including the filtered graphene oxide, and the open bottom of the column, using the flow of water. The cross flow of water through the column carried away the larger-sized filtered graphene oxide floating above the gel layer. The elasticity of the gel layer and cross flow through the column has the potential to recover the filtered particles.
ADAR Mediated RNA Editing Modulates MicroRNA Targeting in Human Breast Cancer
Justin T. Roberts, Dillon G. Patterson, Valeria M. King, Shivam V. Amin, Caroline J. Polska, Dominika Houserova, Aline Crucello, Emmaline C. Barnhill, Molly M. Miller, Timothy D. Sherman, Glen M. Borchert
July 31, 2018 (v1)
Subject: Biosystems
Keywords: ADAR, breast, cancer, inosine, microRNA, microRNA targeting, RNA editing
RNA editing by RNA specific adenosine deaminase acting on RNA (ADAR) is increasingly being found to alter microRNA (miRNA) regulation. Editing of miRNA transcripts can affect their processing, as well as which messenger RNAs (mRNAs) they target. Further, editing of target mRNAs can also affect their complementarity to miRNAs. Notably, ADAR editing is often increased in malignancy with the effect of these RNA changes being largely unclear. In addition, numerous reports have now identified an array of miRNAs that directly contribute to various malignancies although the majority of their targets remain largely undefined. Here we propose that modulating the targets of miRNAs via mRNA editing is a frequent occurrence in cancer and an underappreciated participant in pathology. In order to more accurately characterize the relationship between these two regulatory processes, this study examined RNA editing events within mRNA sequences of two breast cancer cell lines (MCF-7 and MDA-MB-231) and... [more]
Advanced Heterogeneous Fenton Treatment of Coalbed Methane-Produced Water Containing Fracturing Fluid
Meng Zhang, Wei Gu
July 31, 2018 (v1)
Keywords: catalyst, environmental protection, Fenton treatment, methane, produced water
This study investigated the heterogeneous Fenton treatment to process coalbed methane-produced water containing fracturing fluid and chose the development region of coalbed methane in the Southern Qinshui Basin as a research area. We synthesized the catalyst of Fe-Co/γ-Al₂O₃ by homogeneous precipitation method and characterized it by BET, XRD, SEM-EDS, FTIR, and XPS. Based on the degradation rate, we studied the influences of the heterogeneous Fenton method on the coalbed methane output water treatment process parameters, including initial pH, H₂O₂ concentration, and the catalyst concentration. We also investigated the impacts of overall reaction kinetics of heterogeneous catalytic oxidation on coalbed methane-produced water containing fracturing fluid. Results showed that Fe-Co/γ-Al₂O₃ as a Fenton catalyst has a good catalytic oxidation effect and can effectively process coalbed methane-produced water. This reaction also followed first-order kinetics. The optimal conditions were as fo... [more]
FluxVisualizer, a Software to Visualize Fluxes through Metabolic Networks
Tim Daniel Rose, Jean-Pierre Mazat
July 31, 2018 (v1)
Subject: Biosystems
Keywords: elementary flux modes visualization, flux balance analysis, metabolic modelling, metabolic network visualization
FluxVisualizer (Version 1.0, 2017, freely available at https://fluxvisualizer.ibgc.cnrs.fr) is a software to visualize fluxes values on a scalable vector graphic (SVG) representation of a metabolic network by colouring or increasing the width of reaction arrows of the SVG file. FluxVisualizer does not aim to draw metabolic networks but to use a customer’s SVG file allowing him to exploit his representation standards with a minimum of constraints. FluxVisualizer is especially suitable for small to medium size metabolic networks, where a visual representation of the fluxes makes sense. The flux distribution can either be an elementary flux mode (EFM), a flux balance analysis (FBA) result or any other flux distribution. It allows the automatic visualization of a series of pathways of the same network as is needed for a set of EFMs. The software is coded in python3 and provides a graphical user interface (GUI) and an application programming interface (API). All functionalities of the progr... [more]
Measuring Cellular Biomass Composition for Computational Biology Applications
Ashley E. Beck, Kristopher A. Hunt, Ross P. Carlson
July 31, 2018 (v1)
Subject: Biosystems
Keywords: biomass reaction, computational biology, macromolecular composition, metabolic model, methods
Computational representations of metabolism are increasingly common in medical, environmental, and bioprocess applications. Cellular growth is often an important output of computational biology analyses, and therefore, accurate measurement of biomass constituents is critical for relevant model predictions. There is a distinct lack of detailed macromolecular measurement protocols, including comparisons to alternative assays and methodologies, as well as tools to convert the experimental data into biochemical reactions for computational biology applications. Herein is compiled a concise literature review regarding methods for five major cellular macromolecules (carbohydrate, DNA, lipid, protein, and RNA) with a step-by-step protocol for a select method provided for each macromolecule. Additionally, each method was tested on three different bacterial species, and recommendations for troubleshooting and testing new species are given. The macromolecular composition measurements were used to... [more]
Experimental Investigation of the Mechanical Behaviors of Grouted Sand with UF-OA Grouts
Yuhao Jin, Lijun Han, Qingbin Meng, Dan Ma, Guansheng Han, Furong Gao, Shuai Wang
July 31, 2018 (v1)
Subject: Materials
Keywords: chemical grouts, ductile failure, grain size of sand, grouted sand, initial water contained in sand, macroscopic mechanical behaviors, microstructure characteristics
A detailed understanding of the engineering properties for grouted sand is a key concern in foundation engineering projects containing sand layers. In this research, experiments of grouting with various grain sizes of sand specimens using a new type of improved chemical material-urea formaldehyde resin mixed with oxalate curing agent (UF-OA), which has rarely been used as grout in the reinforcement of soft foundations, were conducted on the basis of a self-developed grouting test system. After grouting tests, the effects on the mechanical behaviors of grouted sand specimens were investigated through uniaxial compression tests considering the grain size, the presence or absence of initial water in sand, and the curing time for grouted sand. Experimental results show that with the increase in the grain size and the presence of initial water in the sand specimen, the values of uniaxial compressive strength (UCS) and elastic moduli (E) of the grouted specimens decreased obviously, indicati... [more]
Laboratory Investigation of Granite Permeability after High-Temperature Exposure
Lixin He, Qian Yin, Hongwen Jing
July 31, 2018 (v1)
Subject: Materials
Keywords: confining pressures, Darcy’s law, high temperature, permeability, scanning electron microscope (SEM) images
This study experimentally analysed the influence of temperature levels (200, 300, 400, 500, 600, and 800 °C) on the permeability of granite samples. At each temperature level, the applied confining pressure was in the range of 10⁻30 MPa, and the inlet hydraulic pressure varied below the corresponding confining pressure. The results are as follows: (i) With an increase in the temperature level, induced micro-fractures in the granites develop, and the decrement ratios of both the P-wave velocity and the density of the granite increase; (ii) The relationship between the volume flow rate and the pressure gradient is demonstrably linear and fits very well with Darcy’s law. The equivalent permeability coefficient shows an increasing trend with the temperature, and it can be best described using the mathematical expression K₀ = A × 1.01T; (iii) For a given temperature level, as the confining pressure increases, the transmissivity shows a decrease, and the rate of its decrease diminishes gradu... [more]
Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO₂ Capture
Pingping He, Xingchi Qian, Zhaoyang Fei, Qing Liu, Zhuxiu Zhang, Xian Chen, Jihai Tang, Mifen Cui, Xu Qiao
July 31, 2018 (v1)
Subject: Materials
Keywords: carbon aerogels, Carbon Dioxide Capture, concentration, structure manipulation
A series of carbon aerogels were synthesized by polycondensation of resorcinol and formaldehyde, and their structure was adjusted by managing solution concentration of precursors. Carbon aerogels were characterized by X-ray diffraction (XRD), Raman, Fourier transform infrared spectroscopy (FTIR), N₂ adsorption/desorption and scanning electron microscope (SEM) technologies. It was found that the pore structure and morphology of carbon aerogels can be efficiently manipulated by managing solution concentration. The relative micropore volume of carbon aerogels, defined by Vmicro/Vtol, first increased and then decreased with the increase of solution concentration, leading to the same trend of CO₂ adsorption capacity. Specifically, the CA-45 (the solution concentration of precursors is 45 wt%) sample had the highest CO₂ adsorption capacity (83.71 cm³/g) and the highest selectivity of CO₂/N₂ (53) at 1 bar and 0 °C.
Assessment of Industrial Modules to Design a GFMA Process for Cyanide Recovery Based on a Phenomenological Model
Humberto Estay, Elizabeth Troncoso, René Ruby-Figueroa, Julio Romero
July 31, 2018 (v1)
Keywords: cyanide recovery, gas-filled membrane absorption process, hollow-fiber membrane contactors, Liqui-Cel modules
Cyanide recovery in the gold-mining industry is a crucial step in terms of the cost of operation. Currently, a process such as AVR (acidification, volatilization and recycling), based on packed towers for stripping and absorption stages, addresses this issue with high levels of investment and operational costs. Gas-filled membrane absorption (GFMA) emerges then as an attractive alternative because the stripping and absorption stages can be performed in a single stage, reducing associated investment and operational costs. Despite the advantages of this technology, applications at industrial scale are still emerging. A possible reason is the lack of clear scaling-up methodologies where experimental data can be taken to select the optimum industrial hollow-fiber membrane contactor module (HFMC). The present study proposes a methodology to select adequately between available industrial Liqui-CelTM modules to design a process under optimal operational conditions. The methodology is based on... [more]
Preparation and Potential Applications of Super Paramagnetic Nano-Fe₃O₄
Hao Zhan, Yongning Bian, Qian Yuan, Bozhi Ren, Andrew Hursthouse, Guocheng Zhu
July 31, 2018 (v1)
Subject: Materials
Keywords: environment remediation, Nano-Fe3O4, super paramagnetic, Water
Ferroferric oxide nanoparticle (denoted as Nano-Fe₃O₄) has low toxicity and is biocompatible, with a small particle size and a relatively high surface area. It has a wide range of applications in many fields such as biology, chemistry, environmental science and medicine. Because of its superparamagnetic properties, easy modification and function, it has become an important material for addressing a number of specific tasks. For example, it includes targeted drug delivery nuclear magnetic resonance (NMR) imaging in biomedical applications and in environmental remediation of pollutants. Few articles describe the preparation and modification of Nano-Fe₃O₄ in detail. We present an evaluation of preparation methodologies, as the quality of material produced plays an important role in its successful application. For example, with modification of Nano-Fe₃O₄, the surface activation energy is reduced and good dispersion is obtained.
Rotor-Stator Mixers: From Batch to Continuous Mode of Operation—A Review
Andreas Håkansson
July 31, 2018 (v1)
Keywords: batch, continuous, emulsification, high shear mixer, inline, Mixing, rotor-stator mixer
Although continuous production processes are often desired, many processing industries still work in batch mode due to technical limitations. Transitioning to continuous production requires an in-depth understanding of how each unit operation is affected by the shift. This contribution reviews the scientific understanding of similarities and differences between emulsification in turbulent rotor-stator mixers (also known as high-speed mixers) operated in batch and continuous mode. Rotor-stator mixers are found in many chemical processing industries, and are considered the standard tool for mixing and emulsification of high viscosity products. Since the same rotor-stator heads are often used in both modes of operation, it is sometimes assumed that transitioning from batch to continuous rotor-stator mixers is straight-forward. However, this is not always the case, as has been shown in comparative experimental studies. This review summarizes and critically compares the current understandin... [more]
Free-Radical Graft Polymerization onto Starch as a Tool to Tune Properties in Relation to Potential Applications. A Review
Inge-Willem Noordergraaf, Tori. K. Fourie, Patrizio Raffa
July 31, 2018 (v1)
Subject: Materials
Keywords: assessment of controlled radical polymerization, control by reaction variables, graft size and spacing, starch grafting, structure-properties relations
Grafting of acrylic monomers onto the renewable feedstock starch via free radical polymerizations has been investigated for many years. Many potential applications have been studied, such as superabsorbents, flocculants, thickening agents and so forth. It is expected that size and spacing of the grafts have a large influence on the performance of such polymers. Yet, information upon the structure-property relationships is only scarcely found in literature. Moreover, there is no clear overview of how reaction variables can be used to influence the grafted structure. In this review, an assessment has been made of the relation between the architecture of the grafts and potential applications. Then, from a selection of relevant literature data it is demonstrated that reaction variables such as the relative concentrations of initiator and monomer, have a large impact on the average size and spacing of the grafts. The emergence of controlled radical polymerizations, like Atom Transfer Radica... [more]
Genome-Scale In Silico Analysis for Enhanced Production of Succinic Acid in Zymomonas mobilis
Hanifah Widiastuti, Na-Rae Lee, Iftekhar A. Karimi, Dong-Yup Lee
July 31, 2018 (v1)
Subject: Biosystems
Keywords: gene deletion, genome-scale metabolic model, succinic acid, systems biology, Zymomonas mobilis
Presented herein is a model-driven strategy for characterizing the production capability of expression host and subsequently identifying targets for strain improvement by resorting to network structural comparison with reference strain and in silico analysis of genome-scale metabolic model. The applicability of the strategy was demonstrated by exploring the capability of Zymomonas mobilis, as a succinic acid producer. Initially, the central metabolism of Z. mobilis was compared with reference producer, Mannheimia succiniciproducens, in order to identify gene deletion targets. It was followed by combinatorial gene deletion analysis. Remarkably, resultant in silico strains suggested that knocking out pdc, ldh, and pfl genes encoding pyruvate-consuming reactions as well as the cl gene leads to fifteen-fold increase in succinic acid molar yield. The current exploratory work could be a promising support to wet experiments by providing guidance for metabolic engineering strategies and loweri... [more]
Ball Milling Treatment of Black Dross for Selective Dissolution of Alumina in Sodium Hydroxide Leaching
Thi Thuy Nhi Nguyen, Man Seung Lee, Thi Hong Nguyen
July 31, 2018 (v1)
Keywords: aluminum, ball milling, black dross, leaching, NaOH solution
A process consisting of ball milling followed by NaOH leaching was developed to selectively dissolve alumina from black dross. From the ball milling treatment, it was found that milling speed greatly affected the leaching behavior of silica and the oxides of Ca, Fe, Mg, and Ti present in dross. The leaching behavior of the mechanically activated dross was investigated by varying NaOH concentration, leaching temperature and time, and pulp density. In most of the leaching conditions, only alumina and silica were dissolved, while the leaching percentage of other oxides was negligible. The leaching percentage of silica decreased rapidly to nearly zero as pulp density increased to 100 g/L. At the optimum leaching conditions (5 M NaOH, 50 °C, 2 h, pulp density of 100 g/L), the purity of Al in the leaching solution was higher than 98%, but the leaching percentage of alumina was only 35%.
Steam Explosion and Vibrating Membrane Filtration to Improve the Processing Cost of Microalgae Cell Disruption and Fractionation
Esther Lorente, Monika Hapońska, Ester Clavero, Carles Torras, Joan Salvadó
July 31, 2018 (v1)
Subject: Biosystems
Keywords: cell disruption, costs, dynamic membrane filtration, fractionation, microalgae, steam explosion
The aim of this study is to explore an innovative downstream route for microalgae processing to reduce cost production. Experiments have been carried out on cell disruption and fractionation stages to recover lipids, sugars, and proteins. Steam explosion and dynamic membrane filtration were used as unit operations. The species tested were Nannochloropsis gaditana, Chlorella sorokiniana, and Dunaliella tertiolecta with different cell wall characteristics. Acid-catalysed steam explosion permitted cell disruption, as well as the hydrolysis of carbohydrates and partial hydrolysis of proteins. This permitted a better access to non-polar solvents for lipid extraction. Dynamic filtration was used to moderate the impact of fouling. Filtration enabled two streams: A permeate containing water and monosaccharides and a low-volume retentate containing the lipids and proteins. The necessary volume of solvent to extract the lipids is thus much lower. An estimation of operational costs of both steam... [more]
The Impact of Global Sensitivities and Design Measures in Model-Based Optimal Experimental Design
René Schenkendorf, Xiangzhong Xie, Moritz Rehbein, Stephan Scholl, Ulrike Krewer
July 31, 2018 (v1)
Keywords: global parameter sensitivities, optimal design measures, optimal experimental design, point estimate method, robustification
In the field of chemical engineering, mathematical models have been proven to be an indispensable tool for process analysis, process design, and condition monitoring. To gain the most benefit from model-based approaches, the implemented mathematical models have to be based on sound principles, and they need to be calibrated to the process under study with suitable model parameter estimates. Often, the model parameters identified by experimental data, however, pose severe uncertainties leading to incorrect or biased inferences. This applies in particular in the field of pharmaceutical manufacturing, where usually the measurement data are limited in quantity and quality when analyzing novel active pharmaceutical ingredients. Optimally designed experiments, in turn, aim to increase the quality of the gathered data in the most efficient way. Any improvement in data quality results in more precise parameter estimates and more reliable model candidates. The applied methods for parameter sens... [more]
Assessment of On-Site Treatment Process of Institutional Building’s Wastewater
Motasem N. Saidan, Haifa Al-Yazjeen, Ahlam Abdalla, Hussam J. Khasawneh, Hanan Al-Naimat, Nivin Al Alami, Malik Adawy, Mahmoud S. Jaber, Nidal Sowan
July 31, 2018 (v1)
Keywords: irrigation, Jordan, on-site treatment process, Wastewater, water reuse
This study is conducted to investigate the characteristics of outflow wastewater of the 1 m³ on-site wastewater treatment unit on the basis of the testing and measurement data of the samples that were taken during the study monitored period (August 2017 to January 2018). For this purpose, samples were taken on a weekly basis from the treated wastewater effluent and five quality parameters (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), pH, E-coli counts) were monitored and measured. The average values of the five parameters were compared with the Jordanian standard maximum values, and water reuse in irrigation of plants classifications have been assessed and investigated. Average values of BOD, COD, TSS, pH, and E-coli in treated wastewater were 11 mg/L, 104 mg/L, 15 mg/L, 7.51, and 387 counts, respectively. The installation of in-line ultraviolet (UV) unit in recirculating delivery system played a vital role in the reduction of counts far... [more]
Using Field Data for Energy Efficiency Based on Maintenance and Operational Optimisation. A Step towards PHM in Process Plants
Micaela Demichela, Gabriele Baldissone, Behnoush Darabnia
July 31, 2018 (v1)
Keywords: conservation supply curve, Energy Efficiency, maintenance optimization
Energy saving is an important issue for any industrial sector; in particular, for the process industry, it can help to minimize both energy costs and environmental impact. Maintenance optimization and operational procedures can offer margins to increase energy efficiency in process plants, even if they are seldom explicitly taken into account in the predictive models guiding the energy saving policies. To ensure that the plant achieves the desired performance, maintenance operations and maintenance results should be monitored, and the connection between the inputs and the outcomes of the maintenance process, in terms of total contribution to manufacturing performance, should be explicit. In this study, a model for the energy efficiency analysis was developed, based on cost and benefits balance. It is aimed at supporting the decision making in terms of technical and operational solutions for energy efficiency, through the optimization of maintenance interventions and operational procedu... [more]
Special Issue: Combined Scheduling and Control
John Hedengren, Logan Beal
July 31, 2018 (v1)
This Special Issue (SI) of Processes, “Combined Scheduling and Control,” includes approaches to formulating combined objective functions, multi-scale approaches to integration, mixed discrete and continuous formulations, estimation of uncertain control and scheduling states, mixed integer and nonlinear programming advances, benchmark development, comparison of centralized and decentralized methods, and software that facilitates the creation of new applications and long-term sustainment of benefits.[...]
Fuel Gas Network Synthesis Using Block Superstructure
Jianping Li, Salih Emre Demirel, M. M. Faruque Hasan
July 31, 2018 (v1)
Keywords: block superstructure, fuel gas network synthesis, MINLP, Optimization, process integration
Fuel gas network (FGN) synthesis is a systematic method for reducing fresh fuel consumption in a chemical plant. In this work, we address FGN synthesis problems using a block superstructure representation that was originally proposed for process design and intensification. The blocks interact with each other through direct flows that connect a block with its adjacent blocks and through jump flows that connect a block with all nonadjacent blocks. The blocks with external feed streams are viewed as fuel sources and the blocks with product streams are regarded as fuel sinks. An additional layer of blocks are added as pools when there exists intermediate operations among source and sink blocks. These blocks can be arranged in a I × J two-dimensional grid with I = 1 for problems without pools, or I = 2 for problems with pools. J is determined by the maximum number of pools/sinks. With this representation, we formulate FGN synthesis problem as a mixed-integer nonlinear... [more]
Bleaching of Neutral Cotton Seed Oil Using Organic Activated Carbon in a Batch System: Kinetics and Adsorption Isotherms
Abba Chetima, Abdoul Wahabou, Gaston Zomegni, Abdoul Ntieche Rahman, Divine Bup Nde
July 31, 2018 (v1)
Keywords: activated carbon, cotton, isotherms, Modelling, neem, oil bleaching
In the processing of cotton and neem seeds to obtain oil for diverse uses, enormous quantities of seed husk are generated as waste, which when not properly disposed of, poses environmental problems. One way of reducing this waste is to use it for the production of activated carbon (AC) for its multiple applications. In this work, activated carbon was produced from cotton and neem seed husks by carbonization followed by acid activation. The prepared ACs were characterized for its porosity and surface properties as well as for its ability to bleach neutral cotton seed oil. The prepared ACs are very efficient in the decoloration process, as they removed about 96⁻98% of the pigments compared to 98.4% removal with commercial bleaching earth. Temperature had a pronounced effect on the bleaching of neutral cotton seed oil. Maximum adsorption was observed at 60 °C for a contact time of 45 min. The adsorption kinetics were modelled by the intra-particle and the pseudo-second order equations whi... [more]
Showing records 51 to 75 of 239. [First] Page: 1 2 3 4 5 6 7 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025
Change month: June | July | August | September | October | November | December